login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055120
Digital complement of n (replace each nonzero digit d with 10-d).
17
0, 9, 8, 7, 6, 5, 4, 3, 2, 1, 90, 99, 98, 97, 96, 95, 94, 93, 92, 91, 80, 89, 88, 87, 86, 85, 84, 83, 82, 81, 70, 79, 78, 77, 76, 75, 74, 73, 72, 71, 60, 69, 68, 67, 66, 65, 64, 63, 62, 61, 50, 59, 58, 57, 56, 55, 54, 53, 52, 51, 40, 49, 48, 47, 46, 45, 44, 43, 42, 41, 30, 39
OFFSET
0,2
COMMENTS
a(n) = -n in carryless arithmetic mod 10 - that is, n + a(n) = 0 (cf. A169894). - N. J. A. Sloane, Aug 03 2010
FORMULA
From Robert Israel, Sep 04 2017: (Start)
a(10*n) = 10*a(n).
a(10*n+j) = 10*a(n) + 10 - j for 1 <= j <= 9.
G.f. g(x) satisfies g(x) = 10*(1+x+x^2+...+x^9)*g(x^10) + (9*x+8*x^2+7*x^3+6*x^4+5*x^5+4*x^6+3*x^7+2*x^8+x^9)/(1-x^10).
(End)
EXAMPLE
a(11) = 99 because 1 + 9 = 0 mod 10 for each digit.
a(20) = 80 because 2 + 8 = 0 mod 10 and 0 + 0 = 0 mod 10.
MAPLE
f:=proc(n) local t0, t1, i;
t0:=0; t1:=convert(n, base, 10);
for i from 1 to nops(t1) do
if t1[i]>0 then t0:=t0+(10-t1[i])*10^(i-1); fi;
od:
RETURN(t0);
end;
# N. J. A. Sloane, Jan 21 2011
MATHEMATICA
a[n_] := FromDigits[ IntegerDigits[n] /. d_?Positive -> 10-d]; Table[a[n], {n, 0, 100}](* Jean-François Alcover, Nov 28 2011 *)
PROG
(Haskell)
a055120 = foldl f 0 . reverse . unfoldr g where
f v d = if d == 0 then 10 * v else 10 * v + 10 - d
g x = if x == 0 then Nothing else Just $ swap $ divMod x 10
-- Reinhard Zumkeller, Oct 04 2011
(PARI) a(n)=fromdigits(apply(d->if(d, 10-d, 0), digits(n))) \\ Charles R Greathouse IV, Feb 08 2017
(Python)
def A055120(n): return int(''.join(str(10-int(d)) if d != '0' else d for d in str(n))) # Chai Wah Wu, Apr 03 2021
CROSSREFS
Column k=10 of A248813.
Sequence in context: A251984 A298372 A089186 * A342115 A090671 A132673
KEYWORD
base,easy,nice,nonn
AUTHOR
Henry Bottomley, Apr 19 2000
STATUS
approved