login
A169894
Table of carryless sums i + j, i>=0, j>=0, read by antidiagonals.
4
0, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 11, 11, 1, 1, 1, 1, 1, 1, 1, 1, 11, 11, 12, 12, 12, 2, 2, 2, 2, 2, 2, 2, 12, 12, 12
OFFSET
0,4
EXAMPLE
Table begins:
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ...
1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 11, 12, 13, 14, 15, 16 ...
2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 12, 13, 14, 15, 16, 17 ...
3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 13, 14, 15, 16, 17, 18 ...
4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 14, 15, 16, 17, 18, 19 ...
...
MAPLE
A169894 := proc(a, b)
local adigs, bdigs, cdigs ;
adigs := convert(a, base, 10) ;
bdigs := convert(b, base, 10) ;
len := max(nops(adigs), nops(bdigs)) ;
adigs := [op(adigs), seq(0, d=1..len-nops(adigs))] ;
bdigs := [op(bdigs), seq(0, d=1..len-nops(bdigs))] ;
cdigs := [] ;
for d from 1 to len do
cdigs := [op(cdigs), A010879(op(d, adigs)+op(d, bdigs))] ;
end do:
add(op(d, cdigs)*10^(d-1), d=1..len) ;
end proc: # R. J. Mathar, Jul 12 2013
MATHEMATICA
len[num_]:=Length[IntegerDigits[num]]; digit[num_, d_]:=Part[IntegerDigits[num], d]; T[i_, j_] := FromDigits[Reverse[CoefficientList[PolynomialMod[Sum[digit[i, c]*x^(len[i]-c), {c, len[i]}]+Sum[digit[j, r]*x^(len[j]-r), {r, len[j]}], 10], x]]]; Table[T[i - j, j], {i, 0, 12}, {j, 0, i}] (* Stefano Spezia, Dec 20 2023 *)
CROSSREFS
Cf. A004520 (diagonal), A059692 (carryless products).
Sequence in context: A214972 A225687 A083291 * A357930 A003056 A117707
KEYWORD
nonn,base,look,tabl
AUTHOR
STATUS
approved