This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A048647 Write n in base 4, then replace each digit with its base-4 negative. 20
 0, 3, 2, 1, 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 48, 51, 50, 49, 60, 63, 62, 61, 56, 59, 58, 57, 52, 55, 54, 53, 32, 35, 34, 33, 44, 47, 46, 45, 40, 43, 42, 41, 36, 39, 38, 37, 16, 19, 18, 17, 28, 31, 30, 29, 24, 27, 26, 25, 20, 23, 22, 21, 192, 195, 194, 193, 204, 207, 206 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The graph of a(n) on [ 1..4^k ] resembles a plane fractal of fractal dimension 1. Self-inverse considered as a permutation of the integers. First 4^n terms of the sequence form a permutation s(n) of 0..4^n-1, n>=1; the number of inversions of s(n) is A115490(n). - Gheorghe Coserea, Apr 23 2018 LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..16383 J. W. Layman, View fractal-like graph FORMULA a(n) = if n = 0 then 0 else 4*a(floor(n/4)) + if m = 0 then 0 else 4 - m, where m = n mod 4. - Reinhard Zumkeller, Apr 08 2013 G.f. g(x) satisfies: g(x) = 4*(1+x+x^2+x^3)*g(x^4) + (3*x+2*x^2+x^3)/(1-x^4). - Robert Israel, Nov 03 2014 EXAMPLE a(15)=5, since 15 = 33(base 4) -> 11(base 4) = 5. MAPLE f:= proc(n) option remember; local m, r; m:= n mod 4; r:= 4*procname((n-m)/4); if m = 0 then r else r + 4-m fi; end proc: f(0):= 0: seq(f(n), n=0..100); # Robert Israel, Nov 03 2014 MATHEMATICA Table[FromDigits[If[#==0, 0, 4-#]&/@IntegerDigits[n, 4], 4], {n, 0, 70}] (* Harvey P. Dale, Jul 23 2012 *) PROG (Haskell) a048647 0 = 0 a048647 n = 4 * a048647 n' + if m == 0 then 0 else 4 - m             where (n', m) = divMod n 4 -- Reinhard Zumkeller, Apr 08 2013 (PARI) a(n)=fromdigits(apply(d->if(d, 4-d), digits(n, 4)), 4) \\ Charles R Greathouse IV, Jun 23 2017 (Python) from sympy.ntheory.factor_ import digits def a(n): return int("".join([str(4 - d) if d!=0 else '0' for d in digits(n, 4)[1:]]), 4) print [a(n) for n in xrange(101)] # Indranil Ghosh, Jun 26 2017 CROSSREFS Cf. A065256, A007090. Column k=4 of A248813. Sequence in context: A280512 A068440 A246381 * A180190 A059438 A156628 Adjacent sequences:  A048644 A048645 A048646 * A048648 A048649 A048650 KEYWORD nonn,easy,nice,base,look AUTHOR John W. Layman, Jul 05 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 16 13:51 EDT 2019. Contains 328093 sequences. (Running on oeis4.)