login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097819
E.g.f. exp(3x)/(1-4x).
3
1, 7, 65, 807, 12993, 260103, 6243201, 174811815, 5593984641, 201383466759, 8055338729409, 354434904271143, 17012875405546305, 884669521090002183, 49541493181044905217, 2972489590862708661927, 190239333815213397410049, 12936274699434511153023495
OFFSET
0,2
COMMENTS
Third binomial transform of n!4^n.
LINKS
FORMULA
a(n) = 4*a(n-1)+3^n, n>0, a(0)=1.
a(n) + (-4*n-3)*a(n-1) + 12*(n-1)*a(n-2) = 0. - R. J. Mathar, Dec 21 2014
From Peter Bala, Jan 30 2015: (Start)
a(n) = int {x = 0..inf} (4*x + 3)^n*exp(-x) dx.
a(n) ~ 4^n*n!*exp(3/4).
The e.g.f. y = exp(3*x)/(1 - 4*x) satisfies the differential equation (1 - 4*x)*y' = (7 - 12*x)*y. Mathar's recurrence above follows easily from this.
The sequence b(n) := 4^n*n! also satisfies Mathar's recurrence with b(0) = 1, b(1) = 4. This leads to the continued fraction representation a(n) = 4^n*n!*( 1 + 3/(4 - 12/(11 - 24/(15 - ... - (12*n - 12)/(4*n + 3) )))) for n >= 2. Taking the limit gives the continued fraction representation exp(3/4) = 1 + 3/(4 - 12/(11 - 24/(15 - ... - (12*n - 12)/((4*n + 3) - ... )))). (End)
a(n) = 4^n*exp(3/4)*Gamma(n+1,3/4). - Gerry Martens, Jul 24 2015
MATHEMATICA
With[{nn=20}, CoefficientList[Series[Exp[3x]/(1-4x), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Jun 16 2016 *)
CROSSREFS
Sequence in context: A300488 A085283 A069015 * A152525 A272646 A220067
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 26 2004
STATUS
approved