login
A097820
Expansion of e.g.f. exp(2*x)/(1-4*x).
2
1, 6, 52, 632, 10128, 202592, 4862272, 136143744, 4356600064, 156837602816, 6273504113664, 276034181003264, 13249640688160768, 688981315784368128, 38582953683924631552, 2314977221035477925888, 148158542146270587322368
OFFSET
0,2
COMMENTS
Second binomial transform of n!4^n.
LINKS
FORMULA
E.g.f.: exp(2x)/(1-4x).
a(n) = 4n*a(n-1)+2^n, n>0, a(0)=1.
a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0. - R. J. Mathar, Feb 19 2015
From Emanuele Munarini, Dec 18 2017: (Start)
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*2^(n-k).
Sum_{k=0..n} binomial(n,k)*(-2)^(n-k)*a(k) = 4^n*n!. (End)
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(1/2) * 4^n * Gamma(n + 1, 1/2).
a(n) ~ n! * exp(1/2) * 4^n. (End)
MAPLE
f:= rectoproc({a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0, a(0)=1, a(1)=6}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Dec 19 2017
MATHEMATICA
Table[Sum[Binomial[n, k]4^k k! 2^(n-k), {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Dec 18 2017 *)
Fold[Append[#1, 4 #2*#1[[#2]] + 2^#2] &, {1}, Range@ 16] (* Michael De Vlieger, Dec 18 2017 *)
With[{nn=20}, CoefficientList[Series[Exp[2x]/(1-4x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 14 2020 *)
PROG
(Maxima) makelist(sum(binomial(n, k)*4^k*k!*2^(n-k), k, 0, n), n, 0, 12); /* Emanuele Munarini, Dec 18 2017 */
(PARI) x='x+O('x^99); Vec(serlaplace(exp(2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017
CROSSREFS
Sequence in context: A294158 A209306 A271802 * A166889 A164894 A027835
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 26 2004
STATUS
approved