login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097820
Expansion of e.g.f. exp(2*x)/(1-4*x).
2
1, 6, 52, 632, 10128, 202592, 4862272, 136143744, 4356600064, 156837602816, 6273504113664, 276034181003264, 13249640688160768, 688981315784368128, 38582953683924631552, 2314977221035477925888, 148158542146270587322368
OFFSET
0,2
COMMENTS
Second binomial transform of n!4^n.
LINKS
FORMULA
E.g.f.: exp(2x)/(1-4x).
a(n) = 4n*a(n-1)+2^n, n>0, a(0)=1.
a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0. - R. J. Mathar, Feb 19 2015
From Emanuele Munarini, Dec 18 2017: (Start)
a(n) = Sum_{k=0..n} binomial(n,k)*4^k*k!*2^(n-k).
Sum_{k=0..n} binomial(n,k)*(-2)^(n-k)*a(k) = 4^n*n!. (End)
From Vaclav Kotesovec, Dec 18 2017: (Start)
a(n) = exp(1/2) * 4^n * Gamma(n + 1, 1/2).
a(n) ~ n! * exp(1/2) * 4^n. (End)
MAPLE
f:= rectoproc({a(n) +2*(-2*n-1)*a(n-1) +8*(n-1)*a(n-2) = 0, a(0)=1, a(1)=6}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Dec 19 2017
MATHEMATICA
Table[Sum[Binomial[n, k]4^k k! 2^(n-k), {k, 0, n}], {n, 0, 12}] (* Emanuele Munarini, Dec 18 2017 *)
Fold[Append[#1, 4 #2*#1[[#2]] + 2^#2] &, {1}, Range@ 16] (* Michael De Vlieger, Dec 18 2017 *)
With[{nn=20}, CoefficientList[Series[Exp[2x]/(1-4x), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 14 2020 *)
PROG
(Maxima) makelist(sum(binomial(n, k)*4^k*k!*2^(n-k), k, 0, n), n, 0, 12); /* Emanuele Munarini, Dec 18 2017 */
(PARI) x='x+O('x^99); Vec(serlaplace(exp(2*x)/(1-4*x))) \\ Altug Alkan, Dec 18 2017
CROSSREFS
Sequence in context: A294158 A209306 A271802 * A166889 A164894 A027835
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 26 2004
STATUS
approved