|
|
A027835
|
|
Number of unlabeled strongly connected n-state 2-input automata.
|
|
4
|
|
|
1, 6, 52, 892, 21291, 658885, 24617866, 1077142765, 53918557215, 3036369842197, 189881640057942, 13051044976503663, 977672716919010876, 79267586388173032966, 6914956215333832011058, 645771787789692953182732, 64277686448923785217048191, 6793045601578652098886514581, 759656437858515775195264228768, 89619947709601175930862298926038
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
PROG
|
(PARI) {v(r, n) = if(n==0, 1, n^(r*n) - sum(t=1, n-1, binomial(n, t) * n^(r*(n-t)) * v(r, t) ))}
{s(r, n) = v(r, n) + sum(t=1, n-1, binomial(n-1, t-1) * v(r, n-t) * s(r, t) )} \\ This is Paul D. Hanna's PARI program from A027834 regarding s(r, n) = number of labeled strongly connected n-state r-input automata.
{SS(r, n) = (1/n)*sumdiv(n, m, (s(r, m)/(m-1)!)*sumdiv(n/m, d, moebius(n/(m*d))*d^((r-1)*m+1)))} \\ This calculates the number of unlabeled strongly connected n-state r-input automata. It is Valery A. Liskovets's formula from his 1971 paper.
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
More terms from Petros Hadjicostas, Feb 26 2021 using formula (5), p. 28, in Liskovets (1971)
|
|
STATUS
|
approved
|
|
|
|