login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027834
Number of labeled strongly connected n-state 2-input automata.
5
1, 9, 296, 20958, 2554344, 474099840, 124074010080, 43429847756400, 19565965561887360, 11018376449767451520, 7579467449864423769600, 6251471405353507523097600, 6087988343847192559805952000, 6910412728595671664966422425600, 9042510998634333921282477985689600
OFFSET
1,2
LINKS
Michael A. Harrison, A census of finite automata, Canadian Journal of Mathematics, 17 (1965), 100-113.
Valery A. Liskovets [ Liskovec ], Enumeration of nonisomorphic strongly connected automata, (in Russian); Vesti Akad. Nauk. Belarus. SSR, Ser. Phys.-Mat., No. 3, 1971, pp. 26-30, esp. p. 30 (Math. Rev. 46 #5081; Zentralblatt 224 #94053).
Valery A. Liskovets [ Liskovec ], A general enumeration scheme for labeled graphs, (in Russian); Dokl. Akad. Nauk. Belarus. SSR, Vol. 21, No. 6 (1977), pp. 496-499 (Math. Rev. 58 #21797; Zentralblatt 412 #05052).
Robert W. Robinson, Counting strongly connected finite automata, in: Graph Theory with Applications to Graph Theory and Computer Science, Wiley, 1985, pp. 671-685.
FORMULA
a(n) = A006691(n-1)*(n-1)! for n >= 1 (with A006691(0) := 1). [This is a restatement of Valery A. Liskovets' formula in A006691. The original name of A006691 was edited accordingly. - Petros Hadjicostas, Feb 26 2021]
MATHEMATICA
v[r_, n_] := If[n == 0, 1, n^(r*n) - Sum[Binomial[n, t] * n^(r*(n - t)) * v[r, t], {t, 1, n - 1}]];
s[r_, n_] := v[r, n] + Sum[Binomial[n - 1, t - 1] * v[r, n - t] * s[r, t], {t, 1, n - 1}];
a[n_] := s[2, n];
Array[a, 15] (* Jean-François Alcover, Aug 27 2019, from PARI *)
PROG
(PARI) /* a(n) = s_2(n) using a formula (Th.2) of Valery Liskovets: */
{v(r, n) = if(n==0, 1, n^(r*n) - sum(t=1, n-1, binomial(n, t) * n^(r*(n-t)) * v(r, t) ))}
{s(r, n) = v(r, n) + sum(t=1, n-1, binomial(n-1, t-1) * v(r, n-t) * s(r, t) )}
for(n=1, 20, print1( s(r=2, n), ", ")) \\ Paul D. Hanna, May 16 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
EXTENSIONS
Sequence extended (a(7)-a(15)) by Paul D. Hanna using a formula by Valery A. Liskovets.
STATUS
approved