login
A332129
a(n) = 2*(10^(2n+1)-1)/9 + 7*10^n.
11
9, 292, 22922, 2229222, 222292222, 22222922222, 2222229222222, 222222292222222, 22222222922222222, 2222222229222222222, 222222222292222222222, 22222222222922222222222, 2222222222229222222222222, 222222222222292222222222222, 22222222222222922222222222222, 2222222222222229222222222222222
OFFSET
0,1
FORMULA
a(n) = 2*A138148(n) + 9*10^n = A002276(2n+1) + 7*10^n.
G.f.: (9 - 707*x + 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332129 := n -> 2*(10^(2*n+1)-1)/9+7*10^n;
MATHEMATICA
Array[2 (10^(2 # + 1)-1)/9 + 7*10^# &, 15, 0]
LinearRecurrence[{111, -1110, 1000}, {9, 292, 22922}, 20] (* Harvey P. Dale, Jun 25 2020 *)
PROG
(PARI) apply( {A332129(n)=10^(n*2+1)\9*2+7*10^n}, [0..15])
(Python) def A332129(n): return 10**(n*2+1)//9*2+7*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332119 .. A332189 (variants with different repeated digit 1, ..., 8).
Cf. A332120 .. A332128 (variants with different middle digit 0, ..., 8).
Sequence in context: A322243 A364115 A053935 * A086699 A027834 A175823
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved