login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332126 a(n) = 2*(10^(2n+1)-1)/9 + 4*10^n. 3
6, 262, 22622, 2226222, 222262222, 22222622222, 2222226222222, 222222262222222, 22222222622222222, 2222222226222222222, 222222222262222222222, 22222222222622222222222, 2222222222226222222222222, 222222222222262222222222222, 22222222222222622222222222222, 2222222222222226222222222222222 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..15.

Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).

FORMULA

a(n) = 2*A138148(n) + 6*10^n = A002276(2n+1) + 4*10^n = 2*A332113(n).

G.f.: (6 - 404*x + 200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

MAPLE

A332126 := n -> 2*(10^(2*n+1)-1)/9+4*10^n;

MATHEMATICA

Array[2 (10^(2 # + 1)-1)/9 + 4*10^# &, 15, 0]

Table[FromDigits[Join[PadRight[{}, n, 2], {6}, PadRight[{}, n, 2]]], {n, 0, 20}] (* or *) LinearRecurrence[{111, -1110, 1000}, {6, 262, 22622}, 20] (* Harvey P. Dale, Oct 17 2021 *)

PROG

(PARI) apply( {A332126(n)=10^(n*2+1)\9*2+4*10^n}, [0..15])

(Python) def A332126(n): return 10**(n*2+1)//9*2+4*10**n

CROSSREFS

Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).

Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).

Cf. A332116 .. A332196 (variants with different repeated digit 1, ..., 9).

Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).

Sequence in context: A225166 A003384 A316393 * A229579 A033289 A244493

Adjacent sequences: A332123 A332124 A332125 * A332127 A332128 A332129

KEYWORD

nonn,base,easy

AUTHOR

M. F. Hasler, Feb 09 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 31 18:36 EDT 2023. Contains 361672 sequences. (Running on oeis4.)