login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A332196 a(n) = 10^(2n+1) - 1 - 3*10^n. 7
6, 969, 99699, 9996999, 999969999, 99999699999, 9999996999999, 999999969999999, 99999999699999999, 9999999996999999999, 999999999969999999999, 99999999999699999999999, 9999999999996999999999999, 999999999999969999999999999, 99999999999999699999999999999 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..14.

Index entries for linear recurrences with constant coefficients, signature (111,-1110,1000).

FORMULA

a(n) = 9*A138148(n) + 6*10^n.

G.f.: (6 + 303*x - 1200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).

a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.

MAPLE

A332196 := n -> 10^(n*2+1)-1-3*10^n;

MATHEMATICA

Array[ 10^(2 # + 1) - 1 - 3*10^# &, 15, 0]

FromDigits/@Table[Join[PadLeft[{6}, n, 9], PadRight[{}, n-1, 9]], {n, 30}] (* or *) LinearRecurrence[{111, -1110, 1000}, {6, 969, 99699}, 30] (* Harvey P. Dale, May 03 2021 *)

PROG

(PARI) apply( {A332196(n)=10^(n*2+1)-1-3*10^n}, [0..15])

(Python) def A332196(n): return 10**(n*2+1)-1-3*10^n

CROSSREFS

Cf. A002275 (repunits R_n = (10^n-1)/9), A002283 (9*R_n), A011557 (10^n).

Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).

Cf. A332116 .. A332186 (variants with different repeated digit 1, ..., 8).

Cf. A332190 .. A332197, A181965 (variants with different middle digit 0, ..., 8).

Sequence in context: A266598 A250392 A145250 * A024085 A080474 A079190

Adjacent sequences: A332193 A332194 A332195 * A332197 A332198 A332199

KEYWORD

nonn,base,easy

AUTHOR

M. F. Hasler, Feb 08 2020

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 25 23:06 EDT 2023. Contains 361529 sequences. (Running on oeis4.)