login
A332124
a(n) = 2*(10^(2n+1)-1)/9 + 2*10^n.
3
4, 242, 22422, 2224222, 222242222, 22222422222, 2222224222222, 222222242222222, 22222222422222222, 2222222224222222222, 222222222242222222222, 22222222222422222222222, 2222222222224222222222222, 222222222222242222222222222, 22222222222222422222222222222, 2222222222222224222222222222222
OFFSET
0,1
FORMULA
a(n) = 2*A138148(n) + 4*10^n = A002276(2n+1) + 2*10^n = 2*A332112(n).
G.f.: (4 - 202*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332124 := n -> 2*((10^(2*n+1)-1)/9+10^n);
MATHEMATICA
Array[2 ((10^(2 # + 1)-1)/9 + 10^#) &, 15, 0]
Table[FromDigits[Join[PadRight[{}, n, 2], {4}, PadRight[{}, n, 2]]], {n, 0, 20}] (* or *) LinearRecurrence[{111, -1110, 1000}, {4, 242, 22422}, 20](* Harvey P. Dale, Mar 06 2023 *)
PROG
(PARI) apply( {A332124(n)=(10^(n*2+1)\9+10^n)*2}, [0..15])
(Python) def A332124(n): return (10**(n*2+1)//9+10**n)*2
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332114 .. A332194 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Sequence in context: A137342 A152793 A042769 * A091792 A300595 A320418
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved