login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A332127
a(n) = 2*(10^(2n+1)-1)/9 + 5*10^n.
3
7, 272, 22722, 2227222, 222272222, 22222722222, 2222227222222, 222222272222222, 22222222722222222, 2222222227222222222, 222222222272222222222, 22222222222722222222222, 2222222222227222222222222, 222222222222272222222222222, 22222222222222722222222222222, 2222222222222227222222222222222
OFFSET
0,1
FORMULA
a(n) = 2*A138148(n) + 7*10^n = A002276(2n+1) + 5*10^n.
G.f.: (7 - 505*x + 300*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332127 := n -> 2*(10^(2*n+1)-1)/9+5*10^n;
MATHEMATICA
Array[2 (10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
PROG
(PARI) apply( {A332127(n)=10^(n*2+1)\9*2+5*10^n}, [0..15])
(Python) def A332127(n): return 10**(n*2+1)//9*2+5*10**n
CROSSREFS
Cf. A002275 (repunits R_n = (10^n-1)/9), A002276 (2*R_n), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332117 .. A332197 (variants with different repeated digit 1, ..., 9).
Cf. A332120 .. A332129 (variants with different middle digit 0, ..., 9).
Sequence in context: A100465 A140031 A066413 * A222942 A289634 A065581
KEYWORD
nonn,base,easy
AUTHOR
M. F. Hasler, Feb 09 2020
STATUS
approved