|
|
A066413
|
|
Eisenstein-Mersenne primes: primes of the form ((3 +/- sqrt(-3))/2)^p - 1.
|
|
2
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Analogs of Mersenne primes in Eisenstein integers.
The norm of a + b*w is (a+b*w)*(a+b*w^2) = a^2 - a*b + b^2.
|
|
REFERENCES
|
Mike Oakes, email dated Dec 24 2001 to primenumbers(AT)yahoogroups.com
|
|
LINKS
|
Table of n, a(n) for n=1..8.
K. Pershell and L. Huff, Mersenne primes in imaginary quadratic number fields, Apr 30 2002.
|
|
EXAMPLE
|
For n = 7, (1-w)^7 - 1 has norm 2269, a prime.
|
|
MATHEMATICA
|
maxPi = 40; norm[p_] := 1 + 3^p - 2*3^(p/2)*Cos[p*Pi/6]; A066413 = {}; Do[ If[ PrimeQ[ np = norm[ Prime[k] ] ], AppendTo[ A066413, np] ], {k, 1, maxPi}]; A066413 (* Jean-François Alcover, Oct 16 2012 *)
|
|
CROSSREFS
|
Cf. A066408.
Sequence in context: A069449 A100465 A140031 * A332127 A222942 A289634
Adjacent sequences: A066410 A066411 A066412 * A066414 A066415 A066416
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
Mike Oakes, Dec 24 2001
|
|
EXTENSIONS
|
Name changed by Arkadiusz Wesolowski, Apr 27 2012
|
|
STATUS
|
approved
|
|
|
|