OFFSET
1,1
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..10000
Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Wikipedia, Euler's totient function (see the last paragraph in section "Some values of the function")
FORMULA
a(n) = Card( k>0 : cototient(k)=cototient(n) ) where cototient(x) = x - phi(x). - Benoit Cloitre, May 09 2002
From Antti Karttunen, Jul 18 2017: (Start)
For all n, a(n) <= A071181(n).
(End)
EXAMPLE
invphi(6) = [7, 9, 14, 18], thus a(7) = a(9) = a(14) = a(18) = 4.
MAPLE
nops(invphi(phi(n)));
MATHEMATICA
With[{nn = 120}, Function[s, Take[#, nn] &@ Values@ KeySort@ Flatten@ Map[Function[{k, m}, Map[# -> m &, k]] @@ {#, Length@ #} &@ Lookup[s, #] &, Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, nn^2 + 10]] (* Michael De Vlieger, Jul 18 2017 *)
PROG
(PARI) for(n=1, 150, print1(sum(i=1, 10*n, if(n-eulerphi(n)-i+eulerphi(i), 0, 1)), ", ")) \\ By the original author(s). Note: the upper limit 10*n for the search range is quite ad hoc, and is guaranteed to miss some cases when n is large enough. Cf. Wikipedia-article. - Antti Karttunen, Jul 19 2017
(PARI)
\\ Here is an implementation not using arbitrary limits:
A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ M. F. Hasler, Oct 05 2009
(PARI) a(n) = invphiNum(eulerphi(n)); \\ Amiram Eldar, Nov 14 2024, using Max Alekseyev's invphi.gp
(Scheme)
;; A naive implementation requiring precomputed A057826:
(define (A066412 n) (if (<= n 2) 2 (let ((ph (A000010 n))) (let loop ((k (A057826 (/ ph 2))) (s 0)) (if (zero? k) s (loop (- k 1) (+ s (if (= ph (A000010 k)) 1 0)))))))) ;; Antti Karttunen, Jul 18 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Dec 25 2001
STATUS
approved