The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066412 Number of elements in the set phi_inverse(phi(n)). 9
 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 2, 4, 6, 4, 5, 5, 6, 4, 4, 5, 6, 2, 2, 5, 5, 6, 4, 6, 2, 5, 2, 6, 5, 6, 10, 6, 8, 4, 10, 6, 9, 6, 4, 5, 10, 2, 2, 6, 4, 5, 7, 10, 2, 4, 9, 10, 8, 2, 2, 6, 9, 2, 8, 7, 11, 5, 2, 7, 3, 10, 2, 10, 17, 8, 9, 8, 9, 10, 2, 7, 2, 9, 2, 10, 8, 4, 3, 9, 6, 10, 17, 3, 9, 2, 17, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Antti Karttunen, Table of n, a(n) for n = 1..10000 Wikipedia, Euler's totient function (see the last paragraph in section "Some values of the function") FORMULA a(n) = Card( k>0 : cototient(k)=cototient(n) ) where cototient(x) = x - phi(x). - Benoit Cloitre, May 09 2002 From Antti Karttunen, Jul 18 2017: (Start) a(n) = A014197(A000010(n)). For all n, a(n) <= A071181(n). (End) EXAMPLE invphi(6) = [7, 9, 14, 18], thus a(7) = a(9) = a(14) = a(18) = 4. MAPLE nops(invphi(phi(n))); MATHEMATICA With[{nn = 120}, Function[s, Take[#, nn] &@ Values@ KeySort@ Flatten@ Map[Function[{k, m}, Map[# -> m &, k]] @@ {#, Length@ #} &@ Lookup[s, #] &, Keys@ s]]@ KeySort@ PositionIndex@ Array[EulerPhi, nn^2 + 10]] (* Michael De Vlieger, Jul 18 2017 *) PROG (PARI) for(n=1, 150, print1(sum(i=1, 10*n, if(n-eulerphi(n)-i+eulerphi(i), 0, 1)), ", ")) \\ By the original author(s). Note: the upper limit 10*n for the search range is quite ad hoc, and is guaranteed to miss some cases when n is large enough. Cf. Wikipedia-article. - Antti Karttunen, Jul 19 2017 (PARI) ;; Here is an implementation not using arbitrary limits: A014197(n, m=1) = { n==1 && return(1+(m<2)); my(p, q); sumdiv(n, d, if( d>=m && isprime(d+1), sum( i=0, valuation(q=n\d, p=d+1), A014197(q\p^i, p))))} \\ M. F. Hasler, Oct 05 2009 A066412(n) = A014197(eulerphi(n)); \\ Antti Karttunen, Jul 19 2017 (Scheme) ;; A naive implementation requiring precomputed A057826: (define (A066412 n) (if (<= n 2) 2 (let ((ph (A000010 n))) (let loop ((k (A057826 (/ ph 2))) (s 0)) (if (zero? k) s (loop (- k 1) (+ s (if (= ph (A000010 k)) 1 0)))))))) ;; Antti Karttunen, Jul 18 2017 CROSSREFS Cf. A000010, A001055, A014197, A032447, A036913, A057826, A071181. Cf. A070305 (positions where coincides with A000005). Sequence in context: A105096 A157790 A070241 * A196048 A176075 A256555 Adjacent sequences: A066409 A066410 A066411 * A066413 A066414 A066415 KEYWORD nonn AUTHOR Vladeta Jovovic, Dec 25 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 07:28 EDT 2024. Contains 372760 sequences. (Running on oeis4.)