login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032447
Inverse function of phi( ).
31
1, 2, 3, 4, 6, 5, 8, 10, 12, 7, 9, 14, 18, 15, 16, 20, 24, 30, 11, 22, 13, 21, 26, 28, 36, 42, 17, 32, 34, 40, 48, 60, 19, 27, 38, 54, 25, 33, 44, 50, 66, 23, 46, 35, 39, 45, 52, 56, 70, 72, 78, 84, 90, 29, 58, 31, 62, 51, 64, 68, 80, 96, 102, 120, 37, 57, 63, 74, 76, 108, 114, 126
OFFSET
1,2
COMMENTS
Arrange integers in order of increasing phi value; the phi values themselves form A007614.
Inverse of sequence A064275 considered as a permutation of the positive integers. - Howard A. Landman, Sep 25 2001
In the array shown in the example section row no. n gives exactly the N values for which the cyclotomic polynomials cyclotomic(N,x) have degree A002202(n). - Wolfdieter Lang, Feb 19 2012.
REFERENCES
Sivaramakrishnan, The many facets of Euler's Totient, I. Nieuw Arch. Wisk. 4 (1986), 175-190.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000 (Corrected by Dana Jacobsen, Mar 04 2019)
D. Bressoud, CNT.m Computational Number Theory Mathematica package.
H. Gupta, Euler’s totient function and its inverse, Indian J. pure appl. Math., 12(1): 22-29(1981).
EXAMPLE
phi(1)=phi(2)=1, phi(3)=phi(4)=phi(6)=2, phi(5)=phi(8)=...=4, ...
From Wolfdieter Lang, Feb 19 2012: (Start)
Read as array a(n,m) with row length l(n):=A058277(v(n)) with v(n):= A002202(n), n>=1. a(n,m) = m-th element of the set {m from positive integers: phi(m)=v(n)} when read as an increasingly ordered list.
l(n): 2, 3, 4, 4, 5, 2, 6, 6, 4, 5, ...
n, v(n)\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14
1, 1: 1 2
2, 2: 3 4 6
3, 4: 5 8 10 12
4, 6: 7 9 14 18
5, 8: 15 16 20 24 30
6, 10: 11 22
7, 12: 13 21 26 28 36 42
8, 16: 17 32 34 40 48 60
9, 18: 19 27 38 54
10, 20: 25 33 44 50 66
...
Row no. n=4: The cyclotomic polynomials cyclotomic(N,x) with values N = 7,9,14, and 18 have degree 6, and only these.
(End)
MATHEMATICA
Needs["CNT`"]; Flatten[Table[PhiInverse[n], {n, 40}]] (* T. D. Noe, Oct 15 2012 *)
Take[Values@ PositionIndex@ Array[EulerPhi, 10^3], 15] // Flatten (* Michael De Vlieger, Dec 29 2017 *)
SortBy[Table[{n, EulerPhi[n]}, {n, 150}], Last][[All, 1]] (* Harvey P. Dale, Oct 11 2019 *)
PROG
(PARI)
M = 9660; /* choose a term of A036913 */
v = vector(M, n, [eulerphi(n), n] );
v = vecsort(v, (x, y)-> if( x[1]-y[1]!=0, sign(x[1]-y[1]), sign(x[2]-y[2]) ) );
P=eulerphi(M);
v = select( x->(x[1]<=P), v );
/* A007614 = vector(#v, n, v[n][1] ) */
A032447 = vector(#v, n, v[n][2] )
/* for (n=1, #v, print(n, " ", A032447[n]) ); */ /* b-file */
/* Joerg Arndt, Oct 06 2012 */
(Haskell)
import Data.List.Ordered (insertBag)
a032447 n = a032447_list !! (n-1)
a032447_list = f [1..] a002110_list [] where
f xs'@(x:xs) ps'@(p:ps) us
| x < p = f xs ps' $ insertBag (a000010' x, x) us
| otherwise = map snd vs ++ f xs' ps ws
where (vs, ws) = span ((<= a000010' x) . fst) us
-- Reinhard Zumkeller, Nov 22 2015
(Perl) use ntheory ":all"; my($n, $k, $i, @v)=(10000, 1, 0); push @v, inverse_totient($k++) while @v<$n; $#v=$n-1; say ++$i, " $_" for @v; # Dana Jacobsen, Mar 04 2019
CROSSREFS
KEYWORD
nonn,easy,nice,look
AUTHOR
Ursula Gagelmann (gagelmann(AT)altavista.net)
EXTENSIONS
Example corrected, more terms and program from Olivier Gérard, Feb 1999
STATUS
approved