login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A032448
Smallest prime == -1 modulo prime(n).
3
3, 2, 19, 13, 43, 103, 67, 37, 137, 173, 61, 73, 163, 257, 281, 211, 353, 487, 401, 283, 1021, 157, 331, 1423, 193, 1009, 617, 641, 653, 677, 761, 523, 547, 277, 1489, 1811, 313, 977, 1669, 691, 1789, 1447, 4201, 1543, 787, 397, 421, 1783, 907, 457
OFFSET
1,1
COMMENTS
It appears that a(n) <= prime(n)^2-1, where prime(n) = A000040(n) is the n-th prime; see A035095 for a related conjecture. If correct, this implies A006530(a(n)+1)=prime(n), which in turn implies that there are no duplicated values in the sequence.
LINKS
MATHEMATICA
f[n_] := Block[{p = Prime@ n}, r = p - 1; While[ !PrimeQ@ r, r += p]; r]; Array[f, 50] (* Robert G. Wilson v, Jun 20 2014 *)
PROG
(PARI) a(n) = {prn = prime(n); p = 2; while(p % prn != prn - 1, p = nextprime(p+1)); p; } \\ Michel Marcus, Aug 04 2013
(Haskell)
a032448 n = head [q | q <- a000040_list, let p = a000040 n,
q `mod` p == p - 1]
-- Reinhard Zumkeller, Aug 08 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Jun 25 2003
EXTENSIONS
Edited by Franklin T. Adams-Watters, Jun 21 2010
STATUS
approved