This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032445 Number the digits of the decimal expansion of Pi: 3 is the first, 1 is the second, 4 is the third and so on; a(n) gives the starting position of the first occurrence of n. 16
 33, 2, 7, 1, 3, 5, 8, 14, 12, 6, 50, 95, 149, 111, 2, 4, 41, 96, 425, 38, 54, 94, 136, 17, 293, 90, 7, 29, 34, 187, 65, 1, 16, 25, 87, 10, 286, 47, 18, 44, 71, 3, 93, 24, 60, 61, 20, 120, 88, 58, 32, 49, 173, 9, 192, 131, 211, 405, 11, 5, 128, 220, 21, 313, 23, 8, 118, 99, 606 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A176341 for a variant counting positions starting with 0, and A232013 for a sequence based on iterations of A176341. - M. F. Hasler, Nov 16 2013 LINKS T. D. Noe, Table of n, a(n) for n=0..9999 M. J. Halm, More Sequences, Mpossibilities 83, April 2003. Eric Weisstein's World of Mathematics, Constant Digit Scanning Eric Weisstein's World of Mathematics, Pi Digits FORMULA a(n) = A176341(n)+1. - M. F. Hasler, Nov 16 2013 EXAMPLE a(10) = 50 because the first "10" in the decimal expansion of Pi occurs at digits 50 and 51: 31415926535897932384626433832795028841971693993751058209749445923... MATHEMATICA p = ToString[FromDigits[RealDigits[N[Pi, 10^4]][[1]]]]; Do[Print[StringPosition[p, ToString[n]][[1]][[1]]], {n, 1, 100}] With[{pi=RealDigits[Pi, 10, 1000][[1]]}, Transpose[Flatten[Table[ SequencePosition[ pi, IntegerDigits[n], 1], {n, 0, 70}], 1]][[1]]] (* The program uses the SequencePosition function from Mathematica version 10 *) (* Harvey P. Dale, Dec 01 2015 *) PROG (PARI) A032445(n)=my(L=#Str(n)); n=Mod(n, 10^L); for(k=L-1, 9e9, Pi\.1^k-n||return(k+2-L)) \\ Make sure to use sufficient realprecision, e.g. via \p999. - M. F. Hasler, Nov 16 2013 CROSSREFS Cf. A000796 (decimal expansion of Pi). Cf. A080597 (terms from the decimal expansion of Pi which include every combination of n digits as consecutive subsequences). Cf. A032510 (last string seen when scanning the decimal expansion of Pi until all n-digit strings have been seen). Cf. A064467 (primes in Pi). Sequence in context: A308408 A263169 A034060 * A135088 A113467 A113458 Adjacent sequences:  A032442 A032443 A032444 * A032446 A032447 A032448 KEYWORD nonn,base,easy,nice AUTHOR Jeff Burch, Paul Simon (paulsimn(AT)microtec.net) EXTENSIONS More terms from Simon Plouffe. Corrected by Michael Esposito and Michelle Vella (michael_esposito(AT)oz.sas.com). More terms from Robert G. Wilson v, Oct 04 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 20 18:52 EDT 2019. Contains 327245 sequences. (Running on oeis4.)