OFFSET
1,1
COMMENTS
By Carmichael's conjecture, a(n) <> 1 for any n. See A074987. - Thomas Ordowski, Sep 13 2017
a(n) = 0 iff n is a term of A079695. - Bernard Schott, Oct 02 2021
REFERENCES
Albert H. Beiler, Recreations in the Theory of Numbers, The Queen of Mathematics Entertains, Second Edition, Dover Publications, Inc., NY, 1966, page 90.
LINKS
T. D. Noe, Table of n, a(n) for n = 1..5000
Max Alekseyev, PARI/GP Scripts for Miscellaneous Math Problems (invphi.gp).
Matteo Caorsi and Sergio Cecotti, Geometric classification of 4d N=2 SCFTs, arXiv:1801.04542 [hep-th], 2018.
Carl Pomerance, Popular values of Euler's function, Mathematica 27 (1980), 84-89.
EXAMPLE
If n = 8 then phi(x) = 2*8 = 16 is satisfied for only a(8) = 6 values of x, viz. 17, 32, 34, 40, 48, 60.
MAPLE
with(numtheory); [ seq(nops(invphi(2*n)), n=1..90) ];
MATHEMATICA
t = Table[0, {100} ]; Do[a = EulerPhi[n]; If[a < 202, t[[a/2]]++ ], {n, 3, 10^5} ]; t
PROG
(Magma) [#EulerPhiInverse( 2*n):n in [1..100]]; // Marius A. Burtea, Sep 08 2019
(PARI) a(n) = invphiNum(2*n); \\ Amiram Eldar, Nov 15 2024 using Max Alekseyev's invphi.gp
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Ursula Gagelmann (gagelmann(AT)altavista.net)
EXTENSIONS
Extended by Robin Trew (trew(AT)hcs.harvard.edu).
STATUS
approved