|
|
A002202
|
|
Values taken by totient function phi(m) (A000010).
(Formerly M0987 N0371)
|
|
130
|
|
|
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
These are the numbers n such that for some m the multiplicative group mod m has order n.
Maier & Pomerance show that there are about x * exp(c (log log log x)^2)/log x members of this sequence up to x, with c = 0.81781465... (A234614); see the paper for details on making this precise. - Charles R Greathouse IV, Dec 28 2013
A264739(a(n)) = 1; a(n) occurs A058277(n) times in A007614. - Reinhard Zumkeller, Nov 26 2015
There are no odd numbers > 2 in the sequence and the even numbers that are not in the sequence are in A005277. - Bernard Schott, May 13 2020
|
|
REFERENCES
|
J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
T. D. Noe, Table of n, a(n) for n = 1..10000
André Contiero, and Davi Lima, 2-Adic Stratification of Totients, arXiv:2005.05475 [math.NT], 2020.
K. Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica 49:3 (1988), pp. 263-275.
Maxim Rytin, Finding the Inverse of Euler Totient Function (1999).
S. Sivasankaranarayana Pillai, On some functions connected with phi(n), Bull. Amer. Math. Soc. 35 (1929), 832-836.
Eric Weisstein's World of Mathematics, Totient Valence Function
|
|
MAPLE
|
with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2;
|
|
MATHEMATICA
|
phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
|
|
PROG
|
(PARI) lst(lim)=my(P=1, q, v); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); select(n->n<=lim, v) \\ Charles R Greathouse IV, Apr 16 2012
(PARI) select(istotient, vector(100, i, i)) \\ Charles R Greathouse IV, Dec 28 2012
(Haskell)
import Data.List.Ordered (insertSet)
a002202 n = a002202_list !! (n-1)
a002202_list = f [1..] (tail a002110_list) [] where
f (x:xs) ps'@(p:ps) us
| x < p = f xs ps' $ insertSet (a000010' x) us
| otherwise = vs ++ f xs ps ws
where (vs, ws) = span (<= a000010' x) us
-- Reinhard Zumkeller, Nov 22 2015
|
|
CROSSREFS
|
Cf. A000010, A002180, A032446, A058277.
Cf. A002110, A005277, A007614, A007617 (complement).
Cf. A083533 (first differences), A264739.
Sequence in context: A356448 A340521 A002174 * A049225 A351910 A076450
Adjacent sequences: A002199 A002200 A002201 * A002203 A002204 A002205
|
|
KEYWORD
|
nonn,nice
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|