OFFSET
0,1
COMMENTS
Let f_k(x) = x * exp(k (log log log x)^2)/log x. Maier & Pomerance show that, for any e > 0, f_{c-e}(x) << g(x) << f_{c+e}(x) where g(x) gives the number of totients less than x and c is this constant. Loosely, this means f_c(A007617(n)) is about n.
LINKS
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020, p. 16.
Kevin Ford, The distribution of Totients
Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica 49 (1988), pp. 263-275.
FORMULA
See Maier & Pomerance p. 264.
Equals -1/(2*log(c0)), where c0 is a constant whose decimal expansion is A246746. - Amiram Eldar, Jun 19 2018
EXAMPLE
0.81781464008363223152559680090296560386485298237899...
MATHEMATICA
digits = 101; F[x_?NumericQ] := NSum[((k + 1)*Log[k + 1] - k*Log[k] - 1)*x^k, {k, 1, Infinity}, WorkingPrecision -> digits + 10, NSumTerms -> 1000]; rho = x /. FindRoot[F[x] == 1, {x, 5/10, 6/10}, WorkingPrecision -> digits + 10]; RealDigits[rho, 10, digits] // First ; RealDigits[-1/2/Log[rho], 10, 90][[1]] (* after Jean-François Alcover at A246746 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Charles R Greathouse IV, Dec 28 2013
EXTENSIONS
a(8) corrected and more terms added by Amiram Eldar, Jun 19 2018
STATUS
approved