login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007617
Values not in range of Euler phi function.
54
3, 5, 7, 9, 11, 13, 14, 15, 17, 19, 21, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 45, 47, 49, 50, 51, 53, 55, 57, 59, 61, 62, 63, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 81, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 103, 105, 107
OFFSET
1,1
COMMENTS
Nontotient numbers.
All odd numbers > 2 are in the sequence.
The even numbers of the sequence are in A005277.
The asymptotic density of this sequence is 1. - Amiram Eldar, Mar 26 2021
REFERENCES
Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, section B36, page 138-142.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Jerzy Browkin and Andrzej Schinzel, On integers not of the form n-phi(n), Colloq. Math., Vol. 58 (1995), pp. 55-58.
Paul Erdős and R. R. Hall, Distinct values of Euler's phi-function, Mathematika, Vol. 23 (1976), pp. 1-3.
Kevin Ford, The distribution of totients. Paul Erdős (1913-1996). Ramanujan J., Vol. 2 (1998) pp. 67-151; arXiv preprint, arXiv:1104.3264 [math.NT], 2011-2013.
Kevin Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc., Vol. 4 (1998) pp. 27-34.
Kevin Ford, The number of solutions of phi(x)=m, Ann. of Math.(2), Vol. 150, No. 1 (1999), pp. 283-311.
Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica, Vol. 49, No. 3 (1988), pp. 263-275.
Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
Maxim Rytin, Finding the Inverse of Euler Totient Function, Wolfram Library Archive, 1999.
Zhang Ming-Zhi, On nontotients, J. Number Theory, Vol. 43, No. 2 (1993), pp. 168-173.
FORMULA
A264739(a(n)) = 0. - Reinhard Zumkeller, Nov 26 2015
EXAMPLE
There are no solutions to phi(m)=14, so 14 is a member of the sequence.
MAPLE
A007617 := n -> if invphi(n)=[] then n fi: seq(A007617(i), i=1..107); # Peter Luschny, Jun 26 2011
MATHEMATICA
inversePhi[m_?OddQ] = {}; inversePhi[1] = {1, 2}; inversePhi[m_] := Module[{p, nmax, n, nn}, p = Select[Divisors[m] + 1, PrimeQ]; nmax = m*Times @@ (p/(p - 1)); n = m; nn = {}; While[n <= nmax, If[EulerPhi[n] == m, AppendTo[nn, n]]; n++]; nn]; Select[Range[107], inversePhi[#] == {} &] (* Jean-François Alcover, Jan 03 2012 *)
Select[Range[107], invphi[#] == {}&] (* Jean-François Alcover, Mar 19 2019, using Maxim Rytin's much faster 'invphi' program *)
PROG
(PARI) is(n)=!istotient(n) \\ Charles R Greathouse IV, Dec 28 2013
(Haskell)
import Data.List.Ordered (minus)
a007617 n = a007617_list !! (n-1)
a007617_list = [1..] `minus` a002202_list
-- Reinhard Zumkeller, Nov 22 2015
CROSSREFS
Numbers not in A000010.
Complement of A002202.
Cf. A083534 (first differences), A264739.
Sequence in context: A196546 A371179 A231773 * A065878 A186383 A284055
KEYWORD
nonn
AUTHOR
STATUS
approved