login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007616
Palindromic reflectable primes.
(Formerly M2911)
1
3, 11, 101, 131, 181, 313, 383, 10301, 11311, 13331, 13831, 18181, 30103, 30803, 31013, 38083, 38183, 1003001, 1008001, 1180811, 1183811, 1300031, 1303031, 1311131, 1333331, 1338331, 1831381, 1880881, 1881881, 1883881, 3001003, 3083803, 3103013, 3181813, 3310133
OFFSET
1,1
COMMENTS
Also called triadic primes. - Arkadiusz Wesolowski, Apr 10 2011
Members of A002385 whose digits are in [0,1,3,8]. - Robert Israel, Mar 16 2017
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
C. W. Trigg, Reflectable primes, J. Rec. Math., 15 (No. 1, 1983), p. 252.
LINKS
Chris Caldwell, The Prime Glossary, Triadic prime
G. L. Honaker, Jr. and Chris Caldwell, Prime Curios! 101838101
C. W. Trigg, Reflectable primes, J. Rec. Math., 15 (No. 4, 1983), p. 252. (Annotated scanned copy)
MAPLE
S[1]:= [0, 1, 3, 8]
for i from 2 to 5 do
S[i]:= map(t -> seq(j*(10^(2*i-2)+1)+10*t, j=[0, 1, 3, 8]), S[i-1])
od:
sort(select(isprime, [11, seq(op(S[i]), i=1..5)])); # Robert Israel, Mar 16 2017
MATHEMATICA
Select[FromDigits/@Tuples[{0, 1, 3, 8}, 7], PrimeQ[#]&&PalindromeQ[#]&] (* Harvey P. Dale, Mar 10 2023 *)
CROSSREFS
Cf. A002385.
Sequence in context: A348154 A072640 A154299 * A121045 A092245 A238446
KEYWORD
nonn,base
EXTENSIONS
More terms from Arkadiusz Wesolowski, Sep 30 2011
STATUS
approved