login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242024
Decimal expansion of Sum_{n>=1} (-1)^(n+1)*6/(n*(n+1)*(n+2)).
6
8, 1, 7, 7, 6, 6, 1, 6, 6, 7, 1, 9, 3, 4, 3, 7, 1, 3, 0, 0, 6, 7, 8, 5, 4, 5, 7, 4, 9, 8, 1, 1, 8, 8, 1, 6, 9, 0, 6, 0, 0, 1, 6, 1, 2, 3, 2, 3, 0, 6, 3, 0, 4, 9, 4, 4, 8, 1, 6, 0, 1, 1, 3, 9, 2, 0, 7, 2, 3, 4, 6, 3, 6, 3, 6, 3, 3, 6, 5, 8, 7, 2, 7, 0, 3, 5, 9, 9, 2, 3, 9, 5, 7
OFFSET
0,1
COMMENTS
The sum of the reciprocals of binomial(n,3) for n >= 3 (or A000292(n), for n >= 1) with alternating signs.
Also see A242023.
FORMULA
Equals 12*log(2) - 15/2.
EXAMPLE
0.8177661667193437130067854...
MATHEMATICA
RealDigits[Chop[Sum[N[(-1)^(n+1)*6/(n*(n+1)*(n+2)), 150], {n, 1, Infinity}]], 10, 120][[1]] (* Harvey P. Dale, Jun 02 2016 *)
RealDigits[12*Log[2] - 15/2, 10, 120][[1]] (* Amiram Eldar, Jun 20 2023 *)
PROG
(PARI) 12*log(2) - 15/2 \\ Michel Marcus, Aug 13 2014
(PARI) sumalt(n=1, (-1)^(n + 1)*6/(n*(n + 1)*(n + 2))) \\ Michel Marcus, Aug 14 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Richard R. Forberg, Aug 11 2014
EXTENSIONS
Prior Mathematica program replaced by Harvey P. Dale, Jun 02 2016
STATUS
approved