login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A242022
Decimal expansion of the asymptotic growth rate of the number of odd coefficients in Pascal quintinomial triangle mod 2.
4
7, 8, 9, 6, 4, 1, 8, 5, 0, 5, 3, 0, 7, 6, 8, 5, 6, 3, 9, 0, 1, 5, 4, 7, 2, 6, 7, 0, 6, 6, 4, 1, 4, 0, 1, 8, 9, 9, 0, 8, 2, 9, 5, 5, 3, 5, 9, 2, 6, 8, 3, 8, 9, 3, 5, 2, 3, 6, 5, 3, 8, 7, 9, 4, 6, 2, 2, 3, 6, 9, 5, 8, 7, 4, 9, 0, 3, 0, 1, 9, 3, 4, 9, 7, 8, 8, 9, 0, 8, 4, 0, 7, 7, 8, 4, 2, 9, 4, 4, 6
OFFSET
0,1
LINKS
Steven Finch, Pascal Sebah and Zai-Qiao Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654) p. 10.
FORMULA
log(abs(mu))/log(2) - 1, where mu = 3.4572905... is the root of x^4 - x^3 - 6*x^2 - 4*x - 16 with maximum modulus.
EXAMPLE
0.7896418505307685639015472670664140189908295535926838935...
MATHEMATICA
mu = Sort[Table[Root[x^4 - x^3 - 6*x^2 - 4*x - 16, x, n], {n, 1, 4}], N[Abs[#1]] < N[Abs[#2]] &] // Last; RealDigits[Log[mu]/Log[2] - 1, 10, 100] // First
CROSSREFS
Cf. A242021.
Sequence in context: A114514 A011471 A257237 * A085676 A036793 A257394
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved