|
|
A036793
|
|
Decimal expansion of (2/Pi)*Integral_{x=0..Pi} sin(x)/x dx.
|
|
6
|
|
|
1, 1, 7, 8, 9, 7, 9, 7, 4, 4, 4, 7, 2, 1, 6, 7, 2, 7, 0, 2, 3, 2, 0, 2, 8, 8, 4, 5, 8, 2, 4, 9, 0, 9, 7, 4, 1, 4, 6, 3, 8, 9, 7, 4, 2, 0, 9, 6, 4, 3, 6, 6, 1, 4, 6, 8, 3, 4, 5, 0, 3, 7, 0, 5, 7, 6, 8, 3, 0, 3, 7, 0, 3, 7, 0, 5, 0, 4, 3, 8, 5, 9, 0, 7, 7, 6, 6, 8, 3, 4, 7, 9, 4, 9, 4, 1, 0
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Integral(sin(x)/x dx) = x - x^3/(3*3!) + x^5/(5*5!) - x^7/(7*7!) + ... . - Harry J. Smith, Apr 28 2009
|
|
REFERENCES
|
E. J. Borowski and J. M. Borwein, Dictionary of Mathematics, 3rd printing, Harper Collins, 1991, Gibbs phenomenon.
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.1 Gibbs-Wilbraham Constant, p. 249.
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..20000
Eric Weisstein's World of Mathematics, Wilbraham-Gibbs Constant
|
|
FORMULA
|
A036792 divided by A019669. - R. J. Mathar, Mar 22 2011
|
|
EXAMPLE
|
1.17897974447216727..., the constant in Gibbs phenomenon.
|
|
MATHEMATICA
|
RealDigits[ N[ (2/Pi)*SinIntegral[Pi], 105]][[1]] (* Jean-François Alcover, Nov 07 2012 *)
|
|
PROG
|
(PARI) { default(realprecision, 20080); y=0; x=Pi; m=x; x2=x*x; n=1; nf=1; s=1; while (x!=y, y=x; n++; nf*=n; n++; nf*=n; m*=x2; s=-s; x+=s*m/(n*nf)); x*=2/Pi; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b036793.txt", n, " ", d)); } \\ Harry J. Smith, Apr 28 2009
|
|
CROSSREFS
|
Cf. A036791 (continued fraction), A061079 for Si( x ).
Sequence in context: A257237 A242022 A085676 * A257394 A196278 A006969
Adjacent sequences: A036790 A036791 A036792 * A036794 A036795 A036796
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
N. J. A. Sloane
|
|
STATUS
|
approved
|
|
|
|