OFFSET
0,3
FORMULA
a(n) ~ c * (r^4/((1-r)*(2*r-1)^2))^n * n^(2*n-1/2) / exp(2*n), where r = 0.949867370961706500554205072094811326960829788646... is the root of the equation (1-r)*(2+r)/r^2 = -LambertW(-exp(-1-2/r)*(2+r)/r), and c = 0.42307980713011095154197903821771057626302758607...
MATHEMATICA
Table[Sum[Binomial[n, k] * StirlingS2[2*n+k, k], {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2014
STATUS
approved