login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242019
a(n) = Sum_{k=0..n} Stirling2(2*n+k, k) * C(n, k).
0
1, 1, 33, 3409, 728575, 265362370, 147228369351, 115651594418010, 122167455441632423, 167035663137431205196, 287018982366654934570328, 605456750773492887086145669, 1538306721887736189212800143193, 4633572348321634923252339927247392
OFFSET
0,3
FORMULA
a(n) ~ c * (r^4/((1-r)*(2*r-1)^2))^n * n^(2*n-1/2) / exp(2*n), where r = 0.949867370961706500554205072094811326960829788646... is the root of the equation (1-r)*(2+r)/r^2 = -LambertW(-exp(-1-2/r)*(2+r)/r), and c = 0.42307980713011095154197903821771057626302758607...
MATHEMATICA
Table[Sum[Binomial[n, k] * StirlingS2[2*n+k, k], {k, 0, n}], {n, 0, 20}]
CROSSREFS
Sequence in context: A263105 A284072 A281444 * A305140 A282374 A281933
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2014
STATUS
approved