login
A242019
a(n) = Sum_{k=0..n} Stirling2(2*n+k, k) * C(n, k).
0
1, 1, 33, 3409, 728575, 265362370, 147228369351, 115651594418010, 122167455441632423, 167035663137431205196, 287018982366654934570328, 605456750773492887086145669, 1538306721887736189212800143193, 4633572348321634923252339927247392
OFFSET
0,3
FORMULA
a(n) ~ c * (r^4/((1-r)*(2*r-1)^2))^n * n^(2*n-1/2) / exp(2*n), where r = 0.949867370961706500554205072094811326960829788646... is the root of the equation (1-r)*(2+r)/r^2 = -LambertW(-exp(-1-2/r)*(2+r)/r), and c = 0.42307980713011095154197903821771057626302758607...
MATHEMATICA
Table[Sum[Binomial[n, k] * StirlingS2[2*n+k, k], {k, 0, n}], {n, 0, 20}]
CROSSREFS
Sequence in context: A263105 A284072 A281444 * A305140 A282374 A281933
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 11 2014
STATUS
approved