OFFSET
0,1
COMMENTS
Sum of terms of the inverse of Binomial(n,4) or A000332, for n>=4, with alternating signs.
In general the sums of Binomial coefficients of this form appear to have the form m*log(2) - r, where m is an integer and r is rational as below:
For Binomial(n,1): m = 1, r = 0. See A002162.
For Binomial(n,2): m = 4, r = 2. See A000217.
For Binomial(n,3): m = 12 r = 15/2. See A000292.
For Binomial(n,4): m = 32, r = 64/3. See A000332.
For Binomial(n,5): m = 80, r = 655/12. See A000389.
For Binomial(n,6): m = 192, r = 661/5. See A000579.
For Binomial(n,7): m = 448, r = 9289/30. See A000580.
For Binomial(n,8): m = 1024, r = 74432/105. See A000581.
This is generalized as follows:
m grows as A001787(k) = k*2^(k-1) for Binomial(n,k).
r * (k-1)! produces the integer sequence: a(k) = 0, 2, 15, 128, 1310, 15864, 222936, 3572736, where a(k+1)/a(k) approaches 2*k for large k.
Results are precise to 100 digits or more using Mathematica.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..5000
FORMULA
Equals 32*log(2) - 64/3.
Equals 32*(A259284-1). - R. J. Mathar, Jun 30 2021
EXAMPLE
0.8473764445849165680180945...
MATHEMATICA
Sum[N[(-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)), 150], {n, 1, Infinity}]
RealDigits[32*Log[2] - 64/3, 10, 50][[1]] (* G. C. Greubel, Nov 23 2017 *)
PROG
(PARI) 32*log(2) - 64/3 \\ Michel Marcus, Aug 13 2014
(PARI) sumalt(n=1, (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3))) \\ Michel Marcus, Aug 14 2014
(Magma) [32*Log(2) - 64/3]; // G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
AUTHOR
Richard R. Forberg, Aug 11 2014
STATUS
approved