login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242023
Decimal expansion of Sum_{n >= 1} (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)).
11
8, 4, 7, 3, 7, 6, 4, 4, 4, 5, 8, 4, 9, 1, 6, 5, 6, 8, 0, 1, 8, 0, 9, 4, 5, 5, 3, 3, 2, 8, 3, 1, 6, 8, 4, 5, 0, 8, 2, 6, 7, 0, 9, 6, 6, 1, 9, 4, 8, 3, 4, 7, 9, 8, 5, 2, 8, 4, 2, 6, 9, 7, 0, 4, 5, 5, 2, 6, 2, 5, 6, 9, 6, 9
OFFSET
0,1
COMMENTS
Sum of terms of the inverse of Binomial(n,4) or A000332, for n>=4, with alternating signs.
In general the sums of Binomial coefficients of this form appear to have the form m*log(2) - r, where m is an integer and r is rational as below:
For Binomial(n,1): m = 1, r = 0. See A002162.
For Binomial(n,2): m = 4, r = 2. See A000217.
For Binomial(n,3): m = 12 r = 15/2. See A000292.
For Binomial(n,4): m = 32, r = 64/3. See A000332.
For Binomial(n,5): m = 80, r = 655/12. See A000389.
For Binomial(n,6): m = 192, r = 661/5. See A000579.
For Binomial(n,7): m = 448, r = 9289/30. See A000580.
For Binomial(n,8): m = 1024, r = 74432/105. See A000581.
This is generalized as follows:
m grows as A001787(k) = k*2^(k-1) for Binomial(n,k).
r * (k-1)! produces the integer sequence: a(k) = 0, 2, 15, 128, 1310, 15864, 222936, 3572736, where a(k+1)/a(k) approaches 2*k for large k.
Results are precise to 100 digits or more using Mathematica.
LINKS
FORMULA
Equals 32*log(2) - 64/3.
Equals 32*(A259284-1). - R. J. Mathar, Jun 30 2021
EXAMPLE
0.8473764445849165680180945...
MATHEMATICA
Sum[N[(-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3)), 150], {n, 1, Infinity}]
RealDigits[32*Log[2] - 64/3, 10, 50][[1]] (* G. C. Greubel, Nov 23 2017 *)
PROG
(PARI) 32*log(2) - 64/3 \\ Michel Marcus, Aug 13 2014
(PARI) sumalt(n=1, (-1)^(n + 1)*24/(n*(n + 1)*(n + 2)*(n + 3))) \\ Michel Marcus, Aug 14 2014
(Magma) [32*Log(2) - 64/3]; // G. C. Greubel, Nov 23 2017
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
Richard R. Forberg, Aug 11 2014
STATUS
approved