The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249415 Decimal expansion of p_0, a constant associated with the Khintchine inequality in case of random variables with Rademacher distribution. 1
 1, 8, 4, 7, 4, 1, 6, 3, 3, 6, 0, 7, 6, 3, 4, 2, 1, 2, 9, 3, 9, 7, 6, 9, 3, 6, 8, 9, 7, 3, 4, 5, 9, 1, 2, 1, 1, 9, 1, 5, 3, 4, 7, 8, 3, 2, 5, 0, 3, 7, 0, 2, 6, 9, 7, 5, 2, 1, 8, 4, 0, 2, 9, 8, 4, 1, 1, 8, 2, 1, 7, 9, 4, 6, 3, 8, 1, 4, 2, 4, 8, 5, 2, 1, 1, 8, 9, 0, 1, 9, 2, 1, 0, 6, 4, 1, 9, 4, 9, 4, 4, 5, 6, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS G. C. Greubel, Table of n, a(n) for n = 1..5000 Steven R. Finch, Moments of sums, April 23, 2004 [Cached copy, with permission of the author] Wikipedia, Khintchine inequality Wikipedia, Rademacher distribution FORMULA p_0 is the unique solution of the equation Gamma((p + 1)/2) = sqrt(Pi)/2. EXAMPLE 1.8474163360763421293976936897345912119153478325037... MAPLE Digits := 120; `assuming`([fsolve(GAMMA((p+1)/2) = sqrt(Pi)/2)], [p > 0]) # Vaclav Kotesovec, Oct 28 2014 MATHEMATICA p0 = p /. FindRoot[Gamma[(p + 1)/2] == Sqrt[Pi]/2, {p, 1}, WorkingPrecision -> 104]; RealDigits[p0] // First CROSSREFS Sequence in context: A176453 A257775 A242023 * A021122 A110233 A179260 Adjacent sequences:  A249412 A249413 A249414 * A249416 A249417 A249418 KEYWORD nonn,cons,easy AUTHOR Jean-François Alcover, Oct 28 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 01:35 EDT 2021. Contains 343143 sequences. (Running on oeis4.)