login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249414
Decimal expansion of r_0, a universal radius associated with mapping properties of analytic functions on the unit disk and with Dirichlet's integral.
1
0, 3, 9, 4, 9, 2, 9, 2, 2, 7, 7, 1, 6, 6, 3, 5, 8, 9, 5, 1, 6, 4, 0, 3, 7, 4, 6, 9, 9, 0, 8, 1, 4, 6, 1, 1, 2, 0, 1, 0, 6, 6, 0, 4, 5, 8, 2, 4, 3, 0, 7, 0, 6, 6, 6, 9, 5, 0, 2, 7, 8, 7, 4, 2, 6, 6, 4, 5, 3, 8, 1, 5, 4, 5, 7, 7, 0, 9, 1, 7, 3, 4, 5, 7, 9, 7, 3, 4, 7, 5, 4, 8, 6, 5, 9, 1, 0, 7, 1, 2, 0
OFFSET
0,2
LINKS
Steven R. Finch, Dirichlet Integral, May 15, 2008. [Cached copy, with permission of the author]
FORMULA
r_0 = (2^(1/4)*K(-sqrt(2)) - K(-1/sqrt(2)))/(2^(1/4)*K(-sqrt(2)) + K(-1/sqrt(2))), where K is the complete elliptic integral of the first kind.
EXAMPLE
0.039492922771663589516403746990814611201066045824307066695...
MAPLE
evalf((EllipticK(sqrt(2-sqrt(2))) - EllipticK(sqrt(sqrt(2)-1))) / (EllipticK(sqrt(2-sqrt(2))) + EllipticK(sqrt(sqrt(2)-1))), 120); # Vaclav Kotesovec, Oct 28 2014
MATHEMATICA
r0 = (2^(1/4)*EllipticK[-Sqrt[2]] - EllipticK[-1/Sqrt[2]])/(2^(1/4)*EllipticK[-Sqrt[2]] + EllipticK[-1/Sqrt[2]]); Join[{0}, RealDigits[r0, 10, 100] // First]
Prepend[RealDigits[2/(1 + EllipticK[Sqrt[2] - 1]/EllipticK[2 - Sqrt[2]]) - 1, 10, 100][[1]], 0] (* Jan Mangaldan, Jan 04 2017 *)
CROSSREFS
Sequence in context: A021721 A212002 A199452 * A011428 A070356 A143237
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved