|
|
A242026
|
|
Number of non-palindromic n-tuples of 4 distinct elements.
|
|
3
|
|
|
0, 12, 48, 240, 960, 4032, 16128, 65280, 261120, 1047552, 4190208, 16773120, 67092480, 268419072, 1073676288, 4294901760, 17179607040, 68719214592, 274876858368, 1099510579200, 4398042316800, 17592181850112, 70368727400448, 281474959933440, 1125899839733760
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Non-palindromic vs palindromic (DNA) sequences (e.g., {a,c,a,c} is a non-palindromic sequence but {a,c,c,a} is palindromic). Useful in bioinformatics.
|
|
LINKS
|
Table of n, a(n) for n=1..25.
Index entries for linear recurrences with constant coefficients, signature (4,4,-16).
|
|
FORMULA
|
a(n) = 2^(n-1) * (2^(n+1) + (-1)^n - 3).
a(n) = 4^n - 4^ceiling(n/2) = A000302(n) - A056450(n).
a(n) = 4*a(n-1) + 4*a(n-2) - 16*a(n-3). - Colin Barker, Aug 12 2014
G.f.: 12*x^2 / ((2*x-1)*(2*x+1)*(4*x-1)). - Colin Barker, Aug 12 2014
|
|
EXAMPLE
|
For n=2 the a(2)=12 solutions (non-palindromic 2-tuples over 4 distinct elements {a,c,g,t}) are: {a,c}, {a,g}, {a,t}, {c,a}, {c,g}, {c,f}, {g,a},{g,c}, {g,t}, {t,a}, {t,c}, {t,g}.
|
|
MATHEMATICA
|
Table[2^(n-1) * (2^(n+1) + (-1)^n - 3), {n, 66}]
|
|
PROG
|
(PARI) a(n) = ((-1)^n - 3)*2^(n-1) + 4^n; \\ Michel Marcus, Aug 12 2014
(PARI) concat(0, Vec(12*x^2 / ((2*x-1)*(2*x+1)*(4*x-1)) + O(x^100))) \\ Colin Barker, Aug 12 2014
|
|
CROSSREFS
|
Cf. A000302, A056450, A233411, A242278, A240437.
Sequence in context: A061148 A339760 A221908 * A340727 A052601 A003498
Adjacent sequences: A242023 A242024 A242025 * A242027 A242028 A242029
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Mikk Heidemaa, Aug 12 2014
|
|
EXTENSIONS
|
Typos in formula fixed by Colin Barker, Aug 12 2014
|
|
STATUS
|
approved
|
|
|
|