
REFERENCES

J. L. Nicolas, On highly composite numbers, pp. 215244 in Ramanujan Revisited, Editors G. E. Andrews et al., Academic Press 1988.
S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78129. See esp. pp. 87, 115.
S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.L. Nicholas and G. Robin, Ramanujan J., 1 (1997), 119153.
S. Ramanujan, Highly Composite Numbers: Section IV, in 1) Collected Papers of Srinivasa Ramanujan, pp. 1118, Ed. G. H. Hardy et al., AMS Chelsea 2000. 2) Ramanujan's Papers, pp. 143150, Ed. B. J. Venkatachala et al., Prism Books Bangalore 2000.
S. Ratering, An interesting subset of the highly composite numbers, Math. Mag., 64 (1991), 343346.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


EXAMPLE

For n=2, 6 and 12 we may take e in the intervals (log(2)/log(3), 1], (log(3/2)/log(2), log(2)/log(3)] and (log(2)/log(5), log(3/2)/log(2)], respectively.
Ant King asks if the intervals in the previous line can be extended to include the left endpoints. May 02 2005
