login
A351910
Numbers k >= 1 such that A053818(k) divided by A000010(k) is an integer.
0
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 30, 32, 34, 36, 40, 42, 44, 46, 48, 50, 54, 58, 60, 64, 66, 68, 72, 78, 80, 82, 84, 88, 90, 92, 94, 96, 100, 102, 106, 108, 110, 114, 116, 118, 120, 126, 128, 132, 136, 138, 142, 144, 150, 156, 160, 162, 164, 166, 168, 170
OFFSET
1,2
COMMENTS
Also numbers k >= 1 such that the mean square of the Euler set of k is an integer.
Also numbers k >= 1 such that Sum_{i=1..k, gcd(k,i) = 1} i^2 is a multiple of phi(k), where phi is Euler's totient function.
EXAMPLE
k = 40: A053818(40) = 8560, A000010(40) = 16, 8560/16 = 535 thus 40 is a term.
MATHEMATICA
f[p_, e_] := -p^(1 - e); q[1] = True; q[n_] := IntegerQ[n * Times @@ f @@@ FactorInteger[n]/6 + n^2/3]; Select[Range[160], q] (* Amiram Eldar, Feb 25 2022, based on Brown's formula at A053818 *)
PROG
(PARI) isok(m) = denominator(sum(k=1, m, k^2*(gcd(m, k) == 1))/eulerphi(m)) == 1; \\ Michel Marcus, Feb 25 2022
CROSSREFS
Sequence in context: A002174 A002202 A049225 * A371177 A076450 A097379
KEYWORD
nonn
AUTHOR
Ctibor O. Zizka, Feb 25 2022
STATUS
approved