login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351907
Number of prime quadruples p < q < r < prime(n) in arithmetic progression.
2
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 0, 1, 1, 3, 0, 1, 1, 1, 2, 1, 2, 1, 0, 1, 2, 1, 2, 1, 0, 3, 3, 1, 2, 1, 1, 1, 3, 1, 1, 1, 0, 2, 4, 3, 1, 1, 1, 2, 2, 0, 2, 1, 4, 2, 2, 1, 0, 2, 4, 2, 3, 1, 2, 3, 2, 3, 2, 3, 3, 2, 1, 4, 3, 2, 2, 2, 0, 1, 4, 1, 1
OFFSET
1,17
EXAMPLE
a(9) = 1 corresponds to the quadruple (5, 11, 17, 23) where 23 is the 9th prime.
PROG
(PARI) a(n, q=prime(n))=my(s); forprimestep(p=q%6, q-18, 6, isprime((2*p+q)/3) && isprime((2*q+p)/3) && s++); s
CROSSREFS
Cf. A351908 (partial sums).
Sequence in context: A174875 A193510 A353337 * A357374 A264048 A101257
KEYWORD
nonn
AUTHOR
STATUS
approved