login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353337
Number of ways to write n as a product of the terms of A028260 larger than 1; a(1) = 1 by convention (an empty product).
5
1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 1, 1, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 0, 3, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 3, 1, 1, 1, 2, 0, 3, 1, 0, 1, 1, 1, 4, 0, 0, 0, 3, 0, 0, 0, 2, 0
OFFSET
1,16
COMMENTS
Number of factorizations of n into factors k > 1 for which there is an even number of primes (when counted with multiplicity, A001222) in their prime factorization.
FORMULA
a(n) = a(A046523(n)). [The sequence depends only on the prime signature of n].
For all n >= 1, a(n) >= A320655(n), and a(n) >= A353377(n).
EXAMPLE
Of the eleven divisors of 96 larger than one, the following: [4, 6, 16, 24, 96] are terms of A028260 because they have an even number of prime factors when counted with repetition. Using them, we can factor 96 in four possible ways, as 96 = 24*4 = 16*6 = 6*4*4, therefore a(96) = 4.
PROG
(PARI)
A065043(n) = (1 - (bigomega(n)%2));
A353337(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&A065043(d), s += A353337(n/d, d))); (s));
CROSSREFS
Cf. also A320655, A353377.
Sequence in context: A334944 A174875 A193510 * A351907 A357374 A264048
KEYWORD
nonn
AUTHOR
Antti Karttunen, Apr 17 2022
STATUS
approved