This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A032444 a(1) = 1, a(2) = 16, a(n) = LCM(48, 2n^2) for n>2. 0
 1, 16, 144, 96, 1200, 144, 2352, 384, 1296, 1200, 5808, 288, 8112, 2352, 3600, 1536, 13872, 1296, 17328, 2400, 7056, 5808, 25392, 1152, 30000, 8112, 11664, 4704, 40368, 3600, 46128, 6144, 17424, 13872, 58800, 2592, 65712, 17328, 24336, 9600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In the M. Reid reference the following is proved: Let S(n) be the set of all groups whose order is a product of primes congruent to 1 mod n. Then, a(n) = gcd{|G| - |cc(G)| : G in S(n)}, where |cc(G)| is the number of conjugacy classes of G. - Eric M. Schmidt, Apr 18 2013 REFERENCES M. Reid, The number of conjugacy classes, Amer. Math. Monthly, 105 (1998), 359-361. LINKS Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1). FORMULA a(n) = 3a(n-12) - 3a(n-24) + a(n-36) for n > 38. - Charles R Greathouse IV, Apr 18 2013 PROG (MAGMA) [1, 16] cat [ LCM(48, 2*n^2) : n in [3..10] ]; - from Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006 (PARI) a(n)=if(n>3, lcm(48, 2*n^2), 15*n-14) \\ Charles R Greathouse IV, Apr 18 2013 CROSSREFS Sequence in context: A232311 A048533 A213349 * A017114 A092820 A060300 Adjacent sequences:  A032441 A032442 A032443 * A032445 A032446 A032447 KEYWORD nonn,easy AUTHOR EXTENSIONS Definition rewritten by Eric M. Schmidt, Apr 18 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 9 10:23 EST 2016. Contains 278971 sequences.