The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A213349 7-quantum transitions in systems of N >= 7 spin 1/2 particles, in columns by combination indices. 3
 1, 16, 144, 9, 960, 180, 5280, 1980, 55, 25344, 15840, 1320, 109824, 102960, 17160, 286, 439296, 576576, 160160, 8008, 1647360, 2882880, 1201200, 120120, 1365, 5857280, 13178880, 7687680, 1281280, 43680, 19914752, 56010240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 7,2 COMMENTS For a general discussion, please see A213343. This a(n) is for septuple-quantum transitions (q = 7). It lists the flattened triangle T(7;N,k) with rows N = 7,8,... and columns k = 0..floor((N-7)/2). REFERENCES See A213343 LINKS Stanislav Sykora, Table of n, a(n) for n = 7..2262 Stanislav Sykora, T(7;N,k) with rows N = 7..100 and columns k = 0..floor((N-7)/2) Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019. FORMULA Set q = 7 in: T(q;N,k) = 2^(N-q-2*k)*binomial(N,k)*binomial(N-k,q+k). EXAMPLE Starting rows of the triangle: N | k = 0, 1, ..., floor((N-7)/2) 7 | 1 8 | 16 9 | 144 9 10 | 960 180 11 | 5280 1980 55 MATHEMATICA With[{q = 7}, Table[2^(n - q - 2 k)*Binomial[n, k] Binomial[n - k, q + k], {n, q, q + 10}, {k, 0, Floor[(n - q)/2]}]] // Flatten (* Michael De Vlieger, Nov 20 2019 *) PROG (PARI) See A213343; set thisq = 7 CROSSREFS Cf. A051288 (q=0), A213343 to A213348 (q=1 to 6), A213350 to A213352 (q=8 to 10). Cf. A054851 (first column), A004313 (row sums). Sequence in context: A232311 A048533 A303145 * A336239 A332105 A032444 Adjacent sequences: A213346 A213347 A213348 * A213350 A213351 A213352 KEYWORD nonn,tabf AUTHOR Stanislav Sykora, Jun 13 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 04:57 EDT 2023. Contains 363157 sequences. (Running on oeis4.)