OFFSET
1,1
COMMENTS
Because the degree of the minimal polynomial of cos(2*Pi/k) is phi(k)/2, the degree can never be a number in this sequence. - Artur Jasinski, Feb 23 2011
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
A005277(1)=14, therefore a(1)=7.
MATHEMATICA
phiQ[m_] := Select[Range[m + 1, 2 m*Product[(1 - 1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1] != {}; t = Select[Range[2, 320], phiQ]/2; Select[Range@ Max@ t, !MemberQ[t, #] &] (* Michael De Vlieger, Mar 22 2015, after Jean-François Alcover at A002180 *)
PROG
(PARI) is(n)=!istotient(2*n) \\ Charles R Greathouse IV, Mar 23 2015
(Haskell)
import Data.List.Ordered (minus)
a079695 n = a079695_list !! (n-1)
a079695_list = [1..] `minus` a002180_list
-- Reinhard Zumkeller, Nov 22 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jon Perry, Jan 31 2003
STATUS
approved