login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166602
Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.
9
1, 7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
OFFSET
1,2
COMMENTS
Product_{i=1..k} i^2 = (k!)^2 and Sum_{i=1..k} i^2 = k*(k+1)*(2*k+1)/6. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
EXAMPLE
a(2) = A125314(2) = 7.
MAPLE
q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0):
select(q, [$1..200])[]; # Alois P. Heinz, May 09 2020
MATHEMATICA
Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
PROG
(PARI) isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ Michel Marcus, May 09 2020
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Oct 18 2009
EXTENSIONS
Terms below 5000 by J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
More terms copied from the b-file by R. J. Mathar, Feb 14 2010
STATUS
approved