login
A166599
Number of reduced words of length n in Coxeter group on 18 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
1
1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537241, 10487200270130496, 178282404592174368, 3030800878066215168, 51523614927112923360
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170737, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (16,16,16,16,16,16,16,16,16,16,16,-136).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(136*t^12 - 16*t^11 - 16*t^10 - 16*t^9 -16*t^8 - 16*t^7 - 16*t^6 - 16*t^5 - 16*t^4 - 16*t^3 - 16*t^2 -16*t +1).
From G. C. Greubel, Dec 08 2024: (Start)
a(n) = 16*Sum_{j=1..11} a(n-j) - 136*a(n-12).
G.f.: (1+x)*(1-x^12)/(1 - 17*x + 152*x^12 - 136*x^13). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^12)/(1-17*t+152*t^12-136*t^13), {t, 0, 50}], t] (* G. C. Greubel, May 18 2016; Dec 08 2024 *)
coxG[{12, 136, -16, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 08 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^12)/(1 - 17*x+152*x^12-136*x^13) )); // G. C. Greubel, Dec 08 2024
(SageMath)
def A166599_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^12)/(1-17*x+152*x^12-136*x^13) ).list()
print(A166599_list(40)) # G. C. Greubel, Dec 08 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved