login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170737
Expansion of g.f.: (1+x)/(1-17*x).
50
1, 18, 306, 5202, 88434, 1503378, 25557426, 434476242, 7386096114, 125563633938, 2134581776946, 36287890208082, 616894133537394, 10487200270135698, 178282404592306866, 3030800878069216722, 51523614927176684274, 875901453762003632658, 14890324713954061755186
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*18^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 18*17^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (18*exp(17*x) -1)/17. - G. C. Greubel, Sep 24 2019
MAPLE
k:=18; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 18*17^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
CoefficientList[Series[(1+x)/(1-17x), {x, 0, 30}], x] (* or *) LinearRecurrence[ {17}, {1, 18}, 30] (* or *) Join[{1}, NestList[ 17#&, 18, 30]] (* Harvey P. Dale, Jul 11 2015 *)
PROG
(PARI) a(n)=18*17^n\17 \\ Charles R Greathouse IV, Jul 11 2016
(Python) for i in range(31):print(i, 18*17**(i-1) if i>0 else 1) # Kenny Lau, Aug 01 2017
(Magma) k:=18; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Sep 24 2019
(Sage) k=18; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=18;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
Sequence in context: A170603 A170651 A170699 * A091045 A179121 A226298
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved