login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170736
Expansion of g.f.: (1+x)/(1-16*x).
50
1, 17, 272, 4352, 69632, 1114112, 17825792, 285212672, 4563402752, 73014444032, 1168231104512, 18691697672192, 299067162755072, 4785074604081152, 76561193665298432, 1224979098644774912, 19599665578316398592, 313594649253062377472, 5017514388048998039552
OFFSET
0,2
FORMULA
a(n)= Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*17^k. - Philippe Deléham, Dec 04 2009
a(n) = 17*16^(n-1). - Vincenzo Librandi, Dec 11 2012
a(0)=1, a(1)=17, a(n) = 16*a(n-1). - Vincenzo Librandi, Dec 11 2012
E.g.f.: (17*exp(16*x) - 1)/16. - G. C. Greubel, Sep 24 2019
MAPLE
k:=17; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 17*16^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
CoefficientList[Series[(1+x)/(1-16*x), {x, 0, 25}], x] (* Vincenzo Librandi, Dec 11 2012 *)
PROG
(Magma) [1] cat [17*16^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
(PARI) vector(26, n, k=17; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Sep 24 2019
(Sage) k=17; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=17;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
Sequence in context: A170602 A170650 A170698 * A131865 A298373 A179093
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved