login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A170733 G.f.: (1+x)/(1-13*x). 51
1, 14, 182, 2366, 30758, 399854, 5198102, 67575326, 878479238, 11420230094, 148462991222, 1930018885886, 25090245516518, 326173191714734, 4240251492291542, 55123269399790046, 716602502197270598, 9315832528564517774, 121105822871338731062, 1574375697327403503806 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n>=1, a(n) equals the numbers of words of length n-1 on alphabet {0,1,...,13} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..900

M. Janjic, On Linear Recurrence Equations Arising from Compositions of Positive Integers, J. Int. Seq. 18 (2015) # 15.4.7.

Index entries for linear recurrences with constant coefficients, signature (13).

FORMULA

a(n) = Sum_{k, 0<=k<=n} A097805(n,k)*(-1)^(n-k)*14^k. -  Philippe Deléham, Dec 04 2009

a(0) = 1; for n>0, a(n) = 14*13^(n-1). - Vincenzo Librandi, Dec 05 2009

a(0)=1, a(1)=14, a(n) = 13*a(n-1). - Vincenzo Librandi, Dec 10 2012

MATHEMATICA

Join[{1}, 14*13^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)

CoefficientList[Series[(1 + x)/(1 - 13 x), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 10 2012 *)

Join[{1}, NestList[13#&, 14, 20]] (* Harvey P. Dale, Oct 09 2017 *)

CROSSREFS

Cf. A003954, A170732.

Sequence in context: A170599 A170647 A170695 * A186229 A181237 A091030

Adjacent sequences:  A170730 A170731 A170732 * A170734 A170735 A170736

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Dec 04 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 20 01:52 EDT 2019. Contains 327207 sequences. (Running on oeis4.)