login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186229
Expansion of (2F1( (-(1/2), 1/6); (-2/3))( 16 x) -1)/(2*x).
2
1, 14, 182, 2470, 34580, 494760, 7191690, 105793545, 1570873850, 23500272796, 353724885332, 5351515200668, 81313973049064, 1240116577389200, 18973783634054760, 291115203548084370, 4477664537437798980, 69023046543088792440, 1066084706728274263800, 16495237916832025427160, 255635559046076610807120
OFFSET
0,2
COMMENTS
Combinatorial interpretation welcome.
Probably a class of paths (Cf. A135404, A000888)
LINKS
FORMULA
D-finite with recurrence (n+1)*(3n-2)*a(n) = 4*(6n+1)*(2n-1)*a(n-1). - R. J. Mathar, Jul 11 2012
a(n) ~ 3*GAMMA(2/3)*2^(1/3) * 16^n/(Pi*n^(2/3)). - Vaclav Kotesovec, Aug 13 2013
a(n) = -2^(1/3+4*n)*(-4/3)!*(-1/2+n)!*(1/6+n)!/(Pi*(-2/3+n)!*(1+n)!). - Benedict W. J. Irwin, Jul 12 2016
MATHEMATICA
CoefficientList[Series[(HypergeometricPFQ[{-(1/2), 1/6}, {-(2/3)}, 16 x] - 1)/(2 x), {x, 0, 20}], x]
FullSimplify[Table[-((2^(1/3 + 4 n) (-(4/3))! (-(1/2) + n)! (1/6 + n)!)/(Pi (-(2/3) + n)! (1 + n)!)), {n, 0, 20}]] (* Benedict W. J. Irwin, Jul 12 2016 *)
CROSSREFS
Sequence in context: A170647 A170695 A170733 * A181237 A091030 A179090
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Feb 15 2011
STATUS
approved