OFFSET
0,2
COMMENTS
a(n) is the number of walks of 2n unit steps North, East, South, or West, starting at the origin, bounded above by y=x, below by y=-x and terminating on the ray y = x >= 0. Example: a(1) counts EN, EW; a(2) counts ESNN, ESNW, ENSN, ENSW, ENEN, ENEW, EENN, EENW, EEWN, EEWW, EWEN, EWEW. - David Callan, Oct 11 2005
Bijective proof: given such an NESW walk, construct a pair (P_1, P_2) of lattice paths of upsteps U=(1,1) and downsteps D=(1,-1) as follows. To get P_1, replace each E and S with U and each W and N with D. To get P_2, replace each N and E with U and each S and W with D. For example, EENSNW -> (UUDUDD, UUUDUD). This mapping is 1-to-1 and its range is the Cartesian product of the set of Dyck n-paths and the set of nonnegative paths of length 2n. The Dyck paths are counted by the Catalan number C_n (A000108) and the nonnegative paths are counted (see for example the Callan link) by the central binomial coefficient binomial(2n,n) (A000984). So this is a bijection from these NESW walks to a set of size C_n*binomial(2n,n) = a(n). - David Callan, Sep 18 2007
If A is a random matrix in USp(4) (4 X 4 complex matrices that are unitary and symplectic), then a(n) = E[(tr(A^3))^{2n}]. - Andrew V. Sutherland, Apr 01 2008
Number of walks within N^2 (the first quadrant of Z^2) starting at (0,0), ending on the vertical axis and consisting of 2 n steps taken from {(-1,-1), (-1,1), (1,-1), (1,1)}. - Manuel Kauers, Nov 18 2008
a(n) is equal to the n-th moment of the following positive function defined on x in (0,16), in Maple notation: (EllipticK(sqrt(1-x/16)) - EllipticE(sqrt(1-x/16)))/(Pi^2*sqrt(x)). This is the solution of the Hausdorff moment problem and thus it is unique. - Karol A. Penson, Feb 11 2011
The partial sums of a(n)/A013709(n) absolutely converge to 1/Pi. - Ralf Steiner, Jan 21 2016
REFERENCES
E. R. Hansen, A Table of Series and Products, Prentice-Hall, Englewood Cliffs, NJ, 1975, p. 93.
T. M. MacRobert, Functions of a Complex Variable, 4th ed., Macmillan & Co., London, 1958, p. 177.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..100
Marco S. Bianchi, Protected and uniformly transcendental, arXiv:2306.06239 [hep-th], 2023.
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
David Callan, Bijections for the identity 4^n = ... .
Kiran S. Kedlaya and Andrew V. Sutherland, Hyperelliptic curves, L-polynomials and random matrices, arXiv:0803.4462 [math.NT], 2008-2010.
Helmut Prodinger, Two New Identities Involving the Catalan Numbers: A classical approach, arXiv:1911.07604 [math.CO], 2019.
Ralf Steiner, Beispiele zur modifizierten Wallis-Lambert-Reihe, 2016.
FORMULA
G.f.: 1/4*((16*x-1)*EllipticK(4*x^(1/2)) + EllipticE(4*x^(1/2)))/x/Pi. - Vladeta Jovovic, Oct 12 2003
Given G.f. A(x), y = x*A(x) satisfies y = y'' * (1 - 16*x) * x/4. - Michael Somos, Sep 11 2005
a(n) = binomial(2*n,n)^2/(n+1). - Zerinvary Lajos, May 27 2006
G.f.: 2F1(1/2,1/2;2;16*x). - Paul Barry, Sep 03 2008
a(n) = 2*A125558(n) (n >= 1). - Olivier Gérard, Feb 16 2011
A002894(n) = (n+1) * a(n). A001246(n) = a(n) / (n+1). A089835(n) = n! * a(n). - Michael Somos, May 12 2012
G.f.: 1 + 4*x/(G(0)-4*x) where G(k) = 4*x*(2*k+1)^2 + (k+1)*(k+2) - 4*x*(k+1)*(k+2)*(2*k+3)^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 30 2012
D-finite with recurrence: (n+1)*(n+2)*a(n+1) = 4*(2*n+1)^2*a(n). - Vaclav Kotesovec, Sep 11 2012
a(n) = C(n)*binomial(2*n,n) = Sum_{k=0..2*n} binomial(2*n,k)*C(k)*C(2*n-k) where C(k) are Catalan numbers (A000108), see Prodinger. - Michel Marcus, Nov 19 2019
Sum_{n>=0} a(n)/16^n = 4/Pi (A088538). - Amiram Eldar, May 06 2023
EXAMPLE
G.f.: 1 + 2*x + 12*x^2 + 100*x^3 + 980*x^4 + 10584*x^5 + 121968*x^6 + ...
MAPLE
[seq(binomial(2*n, n)^2/(n+1), n=0..17)]; # Zerinvary Lajos, May 27 2006
MATHEMATICA
f[n_] := Binomial[2 n, n]^2/(n + 1); Array[f, 18, 0] (* Robert G. Wilson v *)
a[ n_] := SeriesCoefficient[ (1/8) (EllipticE[ 16 x] - (1 - 16 x) EllipticK[ 16 x]) / (Pi/2), {x, 0, n + 1}]; (* Michael Somos, Jan 23 2012 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2*n)!^2 / n!^4 / (n+1))}; /* Michael Somos, Sep 11 2005 */
(Magma) [(Factorial(2*n))^2/(Factorial(n))^4/(n+1): n in [0..20]]; // Vincenzo Librandi, Aug 15 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved