login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186230
Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of positive integers j<k such that j,k,n are pairwise coprime.
3
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 2, 2, 0, 0, 0, 0, 0, 1, 0, 0, 1, 2, 2, 4, 2, 0, 0, 0, 1, 0, 2, 0, 3, 0, 0, 1, 0, 1, 3, 0, 4, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 2, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, 0, 0, 0, 1, 0, 2, 0, 0, 0, 2, 0, 4, 0, 5, 0
OFFSET
1,13
COMMENTS
T(n,k) = A000010(k) if n is prime and 1<k<n.
LINKS
FORMULA
T(n,k) = |{ j : 1 <= j < k and GCD(n,k) = GCD(n,j) = GCD(k,j) = 1 }|.
EXAMPLE
T(n,1) = 0 because no positive integer j<1 can be found.
T(n,k) = 0 if GCD(n,k)>1.
T(7,5) = 4 because for j in {1,2,3,4} all conditions are satisfied.
Triangle T(n,k) begins:
0;
0, 0;
0, 1, 0;
0, 0, 1, 0;
0, 1, 2, 2, 0;
0, 0, 0, 0, 1, 0;
0, 1, 2, 2, 4, 2, 0;
MAPLE
with(numtheory):
T:= proc(n, k) local c, i, j, m;
if k=1 or igcd(n, k)>1 then 0
elif isprime(n) then phi(k)
else m:= n*k;
i:= igcd(m, 2);
c:= 0;
for j to k-1 by i do
if igcd(m, j)=1 then c:= c+1 fi
od; c
fi
end:
seq(seq(T(n, k), k=1..n), n=1..20);
MATHEMATICA
t[n_, k_] := Module[{c, i, j, m}, If[ k == 1 || GCD[n, k] > 1, 0, If[PrimeQ[n], EulerPhi[k], m = n*k; i = GCD[m, 2]; c = 0; For[j = 1, j <= k-1, j = j+i, If[GCD[m, j] == 1, c = c+1]]; c]]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* Jean-François Alcover, Dec 19 2013 *)
CROSSREFS
Row sums give: A185953. Column k=2 gives: A000035 for n>1. Lower diagonal gives: A057475(n-1) for n>2. Cf. A000010, A000040, A003989.
Sequence in context: A359887 A033148 A281084 * A214304 A248640 A376562
KEYWORD
nonn,tabl,look
AUTHOR
Alois P. Heinz, Feb 15 2011
STATUS
approved