login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214304
Expansion of phi(q) + phi(q^2) - phi(q^4) in powers of q where phi() is a Ramanujan theta function.
1
1, 2, 2, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of psi(-x^2) * phi(x^4)^2 / f(-x, x^3)^2 in powers of x where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 16 sequence [ 2, -1, -2, 2, -2, 1, 2, -3, 2, 1, -2, 2, -2, -1, 2, -1, ...].
a(n) = 2 * b(n) where b(n) is multiplicative with b(2^e) = (1 - (-1)^e)/2, b(p^e) = (1 + (-1)^e)/2 if p>2.
G.f.: Sum_{k} x^k^2 + x^(2*k^2) - x^(4*k^2).
a(4*n + 3) = a(6*n + 4) = a(6*n + 5) = a(8*n + 4) = a(8*n + 5) = a(8*n + 6) = 0. a(2*n) = A000122(n). a(6*n + 2) = 2 * A089801(n). a(8*n + 1) = 2 * A010054(n).
Sum_{k=1..n} a(k) ~ c * sqrt(n), where c = sqrt(2) + 1 = 2.414213... (A014176). - Amiram Eldar, Dec 30 2023
EXAMPLE
1 + 2*q + 2*q^2 + 2*q^8 + 2*q^9 + 2*q^18 + 2*q^25 + 2*q^32 + 2*q^49 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] + EllipticTheta[ 3, 0, q^2] - EllipticTheta[ 3, 0, q^4], {q, 0, n}]
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, I q] / (2 (I q)^(1/4)) EllipticTheta[ 3, 0, q^4]^2 / (QPochhammer[ -q^4] QPochhammer[ q, -q^4] QPochhammer[ -q^3, -q^4])^2, {q, 0, n}]
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * issquare( n * 2^(n%2==0)))}
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); 2 * prod( k=1, matsize(A)[1], if( p = A[k, 1], e = A[k, 2]; if( p==2, (1 - (-1)^e)/2, (1 + (-1)^e)/2))))}
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jul 12 2012
STATUS
approved