login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A091030
Partial sums of powers of 13 (A001022).
44
1, 14, 183, 2380, 30941, 402234, 5229043, 67977560, 883708281, 11488207654, 149346699503, 1941507093540, 25239592216021, 328114698808274, 4265491084507563, 55451384098598320, 720867993281778161
OFFSET
1,2
COMMENTS
13^a(n) is highest power of 13 dividing (13^n)!.
For analogs with primes 2, 3, 5, 7 and 11 see A000225, A003462, A003463, A023000 and A016123 respectively.
Let A be the Hessenberg matrix of the order n, defined by: A[1,j]=1,A[i,i]:=13, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=14, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=(-1)^(n)*charpoly(A,1). - Milan Janjic, Feb 21 2010
FORMULA
G.f.: x/((1-13*x)*(1-x)) = (1/(1-13*x) - 1/(1-x))/12.
a(n) = Sum_{k=0..n-1} 13^k = (13^n-1)/12.
a(n) = 13*a(n-1)+1 for n>1, a(1)=1. - Vincenzo Librandi, Feb 05 2011
a(n) = Sum_{k=0...n-1} 12^k*binomial(n,n-1-k). - Bruno Berselli, Nov 12 2015
E.g.f.: exp(x)*(exp(12*x) - 1)/12. - Stefano Spezia, Mar 11 2023
EXAMPLE
For n=6, a(6) = 1*6 + 12*15 + 144*20 + 1728*15 + 20736*6 + 248832*1 = 402234. - Bruno Berselli, Nov 12 2015
MAPLE
a:=n->sum(13^(n-j), j=1..n): seq(a(n), n=1..17); # Zerinvary Lajos, Jan 04 2007
MATHEMATICA
Table[13^n, {n, 0, 16}] // Accumulate (* Jean-François Alcover, Jul 05 2013 *)
LinearRecurrence[{14, -13}, {1, 14}, 20] (* Harvey P. Dale, Jan 19 2024 *)
PROG
(Sage) [gaussian_binomial(n, 1, 13) for n in range(1, 18)] # Zerinvary Lajos, May 28 2009
(Sage) [(13^n-1)/12 for n in (1..30)] # Bruno Berselli, Nov 12 2015
(Maxima) A091030(n):=(13^n-1)/12$ makelist(A091030(n), n, 1, 30); /* Martin Ettl, Nov 05 2012 */
(PARI) a(n)=([0, 1; -13, 14]^(n-1)*[1; 14])[1, 1] \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 23 2004
STATUS
approved