The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A023000 a(n) = (7^n - 1)/6. 80
 0, 1, 8, 57, 400, 2801, 19608, 137257, 960800, 6725601, 47079208, 329554457, 2306881200, 16148168401, 113037178808, 791260251657, 5538821761600, 38771752331201, 271402266318408, 1899815864228857, 13298711049602000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Apart from a(0), numbers of the form 11...11 (i.e., repunits) in base 7. 7^(floor(7^n/6)) is the highest power of 7 dividing (7^n)!. - Benoit Cloitre, Feb 04 2002 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=7, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det(A). - Milan Janjic, Feb 21 2010 Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=8, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^n*charpoly(A,1). - Milan Janjic, Feb 21 2010 This is the sequence A(0,1;6,7;2) = A(0,1;8,-7;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010 From Wolfdieter Lang, May 02 2012: (Start) 6*a(n) =: z(n) gives the approximation up to 7^n for one of the three 7-adic integers (-1)^(1/3), i.e. z(n)^3 + 1 == 0 (mod 7^n), n>=0, and z(n) == 6 (mod 7) == -1 (mod 7), n>=1. The companion sequences are x(n) = A210852(n) and y(n) = A212153(n). This leads to a(n) == 1 (mod 7) for n>=1 (this is also clear from some of the formulas given below). Also 216*a(n)^3 + 1 == 0 (mod 7^n), n>=0, as well as 3*216*a(n)^2 + A212156(n) == 0 (mod 7^n), n>=0. a(n) = 6^(7^(n-1)-1) (mod 7^n), n>=1. A recurrence is a(n) = a(n-1) + 7^(n-1), with a(0)=0, for n>=1. Also a(n) = (1/6)*(6*a(n-1))^7 (mod 7^n) with a(1)=1 for n>=1. Finally, 6^3*a(n-1)*a(n)^2 + 1 == 0 (mod 7^(n-1)), n>=1. (End) LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Roger B. Eggleton, Maximal Midpoint-Free Subsets of Integers, International Journal of Combinatorics Volume 2015, Article ID 216475, 14 pages. Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences. Eric Weisstein's World of Mathematics, Repunit. Wikipedia, As I was going to St Ives. Index entries for linear recurrences with constant coefficients, signature (8,-7). FORMULA From R. J. Mathar, Jun 21 2009: (Start) a(n) = 8*a(n-1) - 7*a(n-2). G.f.: x/((1-x)*(1-7*x)). (End) From Wolfdieter Lang, Oct 18 2010: (Start) a(n) = 6*a(n-1) + 7*a(n-2) + 2, a(0)=0, a(1)=1. a(n) = 7*a(n-1) + a(n-2) - 7*a(n-3) = 9*a(n-1) - 15*a(n-2) + 7*a(n-3), a(0)=0, a(1)=1, a(2)=8. Observation by G. Detlefs. See the W. Lang comment and link. (End) a(n) = 7*a(n-1) + 1 (with a(0)=0). - Vincenzo Librandi, Nov 19 2010 a(n) = a(n-1) + 7^(n-1), with a(0)=0, n >= 1. - See a Wolfdieter Lang comment above, May 02 2012 E.g.f.: exp(4*x)*sinh(3*x)/3. - Stefano Spezia, Mar 11 2023 MATHEMATICA LinearRecurrence[{8, -7}, {0, 1}, 30] (* Vincenzo Librandi, Nov 08 2012 *) (7^Range[0, 20]-1)/6 (* Harvey P. Dale, Aug 03 2020 *) PROG (Sage) def a(n): return (7**n-1)//6 [a(n) for n in range(66)] # show terms # Joerg Arndt, May 28 2012 (PARI) a(n)=(7^n-1)/6; /* Joerg Arndt, May 28 2012 */ (Maxima) A023000(n):=floor((7^n-1)/6)\$ makelist(A023000(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */ (Magma) [n le 2 select n-1 else 8*Self(n-1) - 7*Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 08 2012 CROSSREFS Cf. A210852, A212153, A212156. Sequence in context: A295711 A164031 A297369 * A331792 A097114 A022038 Adjacent sequences: A022997 A022998 A022999 * A023001 A023002 A023003 KEYWORD easy,nonn AUTHOR David W. Wilson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 22:26 EDT 2024. Contains 371755 sequences. (Running on oeis4.)