login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001022 Powers of 13.
(Formerly M4914 N2107)
37
1, 13, 169, 2197, 28561, 371293, 4826809, 62748517, 815730721, 10604499373, 137858491849, 1792160394037, 23298085122481, 302875106592253, 3937376385699289, 51185893014090757, 665416609183179841, 8650415919381337933, 112455406951957393129, 1461920290375446110677, 19004963774880799438801 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 13-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011

Numbers n such that sigma(13*n) = 13*n+sigma(n). - Jahangeer Kholdi, Nov 23 2013

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..100

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 277

Tanya Khovanova, Recursive Sequences

Simon Plouffe, Approximations de Séries Génératrices et Quelques Conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.

Index entries for linear recurrences with constant coefficients, signature (13).

FORMULA

G.f.: 1/(1-13*x).

E.g.f.: exp(13*x).

a(n) = 13^n. - Vincenzo Librandi, Nov 21 2010

a(n) = 13*a(n-1) n>0, a(0)=1. - Vincenzo Librandi, Nov 21 2010

a(n) = sum( A001021(k)*binomial(n,k), k=0..n ). It is well known that sum( (h-1)^k*binomial(n,k), k=0..n ) = h^n. - Bruno Berselli, Aug 06 2013

EXAMPLE

For the fifth formula: a(7) = 1*1 +12*7 +144*21 +1728*35 +20736*35 +248832*21 +2985984*7 +35831808*1 = 62748517. - Bruno Berselli, Aug 06 2013

MAPLE

A001022:=-1/(-1+13*z); [Simon Plouffe in his 1992 dissertation.]

MATHEMATICA

Table[13^n, {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 15 2011*)

PROG

(MAGMA) [13^n: n in [0..100]]; // Vincenzo Librandi, Nov 21 2010

(Maxima) A001022(n):=13^n$ makelist(A001022(n), n, 0, 30); /* Martin Ettl, Nov 05 2012 */

CROSSREFS

Cf. A001021.

Sequence in context: A045593 A045597 A045600 * A195945 A228389 A020533

Adjacent sequences:  A001019 A001020 A001021 * A001023 A001024 A001025

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Sep 19 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 30 14:31 EDT 2017. Contains 284302 sequences.