login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A170735
Expansion of g.f.: (1+x)/(1-15*x).
50
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406250000, 138396093750000, 2075941406250000, 31139121093750000, 467086816406250000, 7006302246093750000, 105094533691406250000, 1576418005371093750000, 23646270080566406250000
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*16^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 16*15^(n-1). - Vincenzo Librandi, Dec 05 2009
a(0)=1, a(1)=16, a(n) = 15*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (16*exp(15*x) - 1)/15. - G. C. Greubel, Sep 23 2019
MAPLE
seq(`if`(n=0, 1, 16*15^(n-1)), n=0..20); # G. C. Greubel, Sep 23 2019
MATHEMATICA
Join[{1}, 16*15^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 13 2011 *)
CoefficientList[Series[(1+x)/(1-15x), {x, 0, 30}], x] ( * Vincenzo Librandi, Dec 10 2012 *)
Join[{1}, NestList[15#&, 16, 20]] (* Harvey P. Dale, Sep 25 2015 *)
PROG
(Magma) [1] cat[16*15^(n-1): n in [1..20]]; // Vincenzo Librandi, Dec 10 2012
(PARI) vector(20, n, if(n==1, 1, 16*15^(n-2))) \\ G. C. Greubel, Sep 23 2019
(Sage) [1]+[16*15^(n-1) for n in (1..20)] # G. C. Greubel, Sep 23 2019
(GAP) Concatenation([1], List([1..20], n-> 16*15^(n-1) )); # G. C. Greubel, Sep 23 2019
CROSSREFS
Sequence in context: A170601 A170649 A170697 * A058667 A005619 A204793
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved